Skip to content

Commit

Permalink
feat(linear_algebra/orientation): add orientation.reindex
Browse files Browse the repository at this point in the history
  • Loading branch information
eric-wieser committed Aug 30, 2023
1 parent bae4f34 commit 15fc9b2
Show file tree
Hide file tree
Showing 3 changed files with 90 additions and 6 deletions.
41 changes: 40 additions & 1 deletion Mathlib/LinearAlgebra/Alternating.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ import Mathlib.LinearAlgebra.LinearIndependent
import Mathlib.LinearAlgebra.Multilinear.Basis
import Mathlib.LinearAlgebra.Multilinear.TensorProduct

#align_import linear_algebra.alternating from "leanprover-community/mathlib"@"bd65478311e4dfd41f48bf38c7e3b02fb75d0163"
#align_import linear_algebra.alternating from "leanprover-community/mathlib"@"0c1d80f5a86b36c1db32e021e8d19ae7809d5b79"

/-!
# Alternating Maps
Expand Down Expand Up @@ -759,6 +759,13 @@ theorem domDomCongr_add (σ : ι ≃ ι') (f g : AlternatingMap R M N ι) :
rfl
#align alternating_map.dom_dom_congr_add AlternatingMap.domDomCongr_add

@[simp]
theorem domDomCongr_smul {S : Type _} [Monoid S] [DistribMulAction S N] [SMulCommClass R S N]
(σ : ι ≃ ι') (c : S) (f : AlternatingMap R M N ι) :
(c • f).domDomCongr σ = c • f.domDomCongr σ :=
rfl
#align alternating_map.dom_dom_congr_smul AlternatingMap.domDomCongr_smul

/-- `AlternatingMap.domDomCongr` as an equivalence.
This is declared separately because it does not work with dot notation. -/
Expand All @@ -777,6 +784,38 @@ def domDomCongrEquiv (σ : ι ≃ ι') : AlternatingMap R M N ι ≃+ Alternatin
#align alternating_map.dom_dom_congr_equiv_apply AlternatingMap.domDomCongrEquiv_apply
#align alternating_map.dom_dom_congr_equiv_symm_apply AlternatingMap.domDomCongrEquiv_symm_apply

section DomDomLcongr

variable (S : Type _) [Semiring S] [Module S N] [SMulCommClass R S N]

/-- `alternating_map.dom_dom_congr` as a linear equivalence. -/
@[simps apply symm_apply]
def domDomLcongr (σ : ι ≃ ι') : AlternatingMap R M N ι ≃ₗ[S] AlternatingMap R M N ι'
where
toFun := domDomCongr σ
invFun := domDomCongr σ.symm
left_inv f := by ext; simp [Function.comp]
right_inv m := by ext; simp [Function.comp]
map_add' := domDomCongr_add σ
map_smul' := domDomCongr_smul σ
#align alternating_map.dom_dom_lcongr AlternatingMap.domDomLcongr

@[simp]
theorem domDomLcongr_refl :
(domDomLcongr S (Equiv.refl ι) : AlternatingMap R M N ι ≃ₗ[S] AlternatingMap R M N ι) =
LinearEquiv.refl _ _ :=
LinearEquiv.ext domDomCongr_refl
#align alternating_map.dom_dom_lcongr_refl AlternatingMap.domDomLcongr_refl

@[simp]
theorem domDomLcongr_toAddEquiv (σ : ι ≃ ι') :
(domDomLcongr S σ : AlternatingMap R M N ι ≃ₗ[S] AlternatingMap R M N ι').toAddEquiv =
domDomCongrEquiv σ :=
rfl
#align alternating_map.dom_dom_lcongr_to_add_equiv AlternatingMap.domDomLcongr_toAddEquiv

end DomDomLcongr

/-- The results of applying `domDomCongr` to two maps are equal if and only if those maps are. -/
@[simp]
theorem domDomCongr_eq_iff (σ : ι ≃ ι') (f g : AlternatingMap R M N ι) :
Expand Down
7 changes: 6 additions & 1 deletion Mathlib/LinearAlgebra/Determinant.lean
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ import Mathlib.Tactic.FieldSimp
import Mathlib.LinearAlgebra.Matrix.NonsingularInverse
import Mathlib.LinearAlgebra.Matrix.Basis

#align_import linear_algebra.determinant from "leanprover-community/mathlib"@"bd65478311e4dfd41f48bf38c7e3b02fb75d0163"
#align_import linear_algebra.determinant from "leanprover-community/mathlib"@"0c1d80f5a86b36c1db32e021e8d19ae7809d5b79"

/-!
# Determinant of families of vectors
Expand Down Expand Up @@ -616,6 +616,11 @@ theorem Basis.det_reindex {ι' : Type*} [Fintype ι'] [DecidableEq ι'] (b : Bas
rw [Basis.det_apply, Basis.toMatrix_reindex', det_reindexAlgEquiv, Basis.det_apply]
#align basis.det_reindex Basis.det_reindex

theorem Basis.det_reindex' {ι' : Type*} [Fintype ι'] [DecidableEq ι'] (b : Basis ι R M)
(e : ι ≃ ι') : (b.reindex e).det = b.det.domDomCongr e :=
AlternatingMap.ext fun _ => Basis.det_reindex _ _ _
#align basis.det_reindex' Basis.det_reindex'

theorem Basis.det_reindex_symm {ι' : Type*} [Fintype ι'] [DecidableEq ι'] (b : Basis ι R M)
(v : ι → M) (e : ι' ≃ ι) : (b.reindex e.symm).det (v ∘ e) = b.det v := by
rw [Basis.det_reindex, Function.comp.assoc, e.self_comp_symm, Function.comp.right_id]
Expand Down
48 changes: 44 additions & 4 deletions Mathlib/LinearAlgebra/Orientation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ Authors: Joseph Myers
import Mathlib.LinearAlgebra.Ray
import Mathlib.LinearAlgebra.Determinant

#align_import linear_algebra.orientation from "leanprover-community/mathlib"@"ce11c3c2a285bbe6937e26d9792fda4e51f3fe1a"
#align_import linear_algebra.orientation from "leanprover-community/mathlib"@"0c1d80f5a86b36c1db32e021e8d19ae7809d5b79"

/-!
# Orientations of modules
Expand Down Expand Up @@ -46,7 +46,7 @@ variable (M : Type*) [AddCommMonoid M] [Module R M]

variable {N : Type*} [AddCommMonoid N] [Module R N]

variable (ι : Type*)
variableι' : Type*)

/-- An orientation of a module, intended to be used when `ι` is a `Fintype` with the same
cardinality as a basis. -/
Expand Down Expand Up @@ -85,6 +85,35 @@ theorem Orientation.map_symm (e : M ≃ₗ[R] N) :
(Orientation.map ι e).symm = Orientation.map ι e.symm := rfl
#align orientation.map_symm Orientation.map_symm

section Reindex

variable (R M) {ι ι'}

/-- An equivalence between indices implies an equivalence between orientations. -/
def Orientation.reindex (e : ι ≃ ι') : Orientation R M ι ≃ Orientation R M ι' :=
Module.Ray.map <| AlternatingMap.domDomLcongr R e
#align orientation.reindex Orientation.reindex

@[simp]
theorem Orientation.reindex_apply (e : ι ≃ ι') (v : AlternatingMap R M R ι) (hv : v ≠ 0) :
Orientation.reindex R M e (rayOfNeZero _ v hv) =
rayOfNeZero _ (v.domDomCongr e) (mt (v.domDomCongr_eq_zero_iff e).mp hv) :=
rfl
#align orientation.reindex_apply Orientation.reindex_apply

@[simp]
theorem Orientation.reindex_refl : (Orientation.reindex R M <| Equiv.refl ι) = Equiv.refl _ := by
rw [Orientation.reindex, AlternatingMap.domDomLcongr_refl, Module.Ray.map_refl]
#align orientation.reindex_refl Orientation.reindex_refl

@[simp]
theorem Orientation.reindex_symm (e : ι ≃ ι') :
(Orientation.reindex R M e).symm = Orientation.reindex R M e.symm :=
rfl
#align orientation.reindex_symm Orientation.reindex_symm

end Reindex

/-- A module is canonically oriented with respect to an empty index type. -/
instance (priority := 100) IsEmpty.oriented [Nontrivial R] [IsEmpty ι] : Module.Oriented R M ι
where positiveOrientation :=
Expand Down Expand Up @@ -123,9 +152,15 @@ protected theorem Orientation.map_neg {ι : Type*} (f : M ≃ₗ[R] N) (x : Orie
Module.Ray.map_neg _ x
#align orientation.map_neg Orientation.map_neg

@[simp]
protected theorem Orientation.reindex_neg {ι ι' : Type _} (e : ι ≃ ι') (x : Orientation R M ι) :
Orientation.reindex R M e (-x) = -Orientation.reindex R M e x :=
Module.Ray.map_neg _ x
#align orientation.reindex_neg Orientation.reindex_neg

namespace Basis

variable {ι : Type*}
variableι' : Type*}

/-- The value of `Orientation.map` when the index type has the cardinality of a basis, in terms
of `f.det`. -/
Expand All @@ -142,7 +177,7 @@ theorem map_orientation_eq_det_inv_smul [Finite ι] (e : Basis ι R M) (x : Orie
LinearEquiv.coe_inv_det]
#align basis.map_orientation_eq_det_inv_smul Basis.map_orientation_eq_det_inv_smul

variable [Fintype ι] [DecidableEq ι]
variable [Fintype ι] [DecidableEq ι] [Fintype ι'] [DecidableEq ι']

/-- The orientation given by a basis. -/
protected def orientation [Nontrivial R] (e : Basis ι R M) : Orientation R M ι :=
Expand All @@ -154,6 +189,11 @@ theorem orientation_map [Nontrivial R] (e : Basis ι R M) (f : M ≃ₗ[R] N) :
simp_rw [Basis.orientation, Orientation.map_apply, Basis.det_map']
#align basis.orientation_map Basis.orientation_map

theorem orientation_reindex [Nontrivial R] (e : Basis ι R M) (eι : ι ≃ ι') :
(e.reindex eι).Orientation = Orientation.reindex R M eι e.Orientation := by
simp_rw [Basis.orientation, Orientation.reindex_apply, Basis.det_reindex']
#align basis.orientation_reindex Basis.orientation_reindex

/-- The orientation given by a basis derived using `units_smul`, in terms of the product of those
units. -/
theorem orientation_unitsSMul [Nontrivial R] (e : Basis ι R M) (w : ι → Units R) :
Expand Down

0 comments on commit 15fc9b2

Please sign in to comment.