Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

feat(algebra/field/basic): nnrat.cast #16554

Closed
wants to merge 55 commits into from
Closed
Show file tree
Hide file tree
Changes from 50 commits
Commits
Show all changes
55 commits
Select commit Hold shift + click to select a range
8a73631
initial commit
YaelDillies Sep 19, 2022
baf396b
tame imports a bit more
YaelDillies Sep 19, 2022
32273f3
fix data.fin.succ_pred
YaelDillies Sep 20, 2022
23c243c
initial commit
YaelDillies Sep 20, 2022
bee8c4a
add_opposite instances
YaelDillies Sep 20, 2022
4a7f5d2
nnrat.cast, at last
YaelDillies Sep 20, 2022
a466371
fix order.succ_pred.interval_succ
YaelDillies Sep 20, 2022
e783aa1
Merge remote-tracking branch 'origin/semifield_opposite' into nnrat_cast
YaelDillies Sep 20, 2022
c8956cd
opposites
YaelDillies Sep 21, 2022
ad8c70b
fix order.atoms
YaelDillies Sep 21, 2022
1fe5e9f
lower imports of algebra.parity
YaelDillies Sep 21, 2022
cd35528
fix algebra.ring.ulit
YaelDillies Sep 21, 2022
294b34a
more
YaelDillies Oct 4, 2022
a9f845d
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Nov 4, 2022
5434717
move(data/set/pointwise/interval): Sanitise imports
YaelDillies Nov 4, 2022
1df9ed1
fix
kim-em Nov 4, 2022
327b61a
fix import
kim-em Nov 4, 2022
19e44ea
fix
kim-em Nov 4, 2022
da238e0
add missing downstream imports
kim-em Nov 4, 2022
3b58be2
merge master
kim-em Nov 4, 2022
6d6553b
fix import
kim-em Nov 4, 2022
01d46e6
fix data.intervals.ord_connected_component
YaelDillies Nov 4, 2022
969b8c7
clean opposites
YaelDillies Nov 4, 2022
8f85286
fix linear_algebra.affine_space.affine_map
YaelDillies Nov 4, 2022
75ccc56
fix topology.algebra.order.basic
YaelDillies Nov 4, 2022
b6f9997
Merge remote-tracking branch 'origin/pointwise_interval' into nnrat_cast
YaelDillies Nov 4, 2022
3c62f0a
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Nov 6, 2022
7ca9943
fix algebra.order.nonneg.field
YaelDillies Nov 6, 2022
e5ae584
fix algebra.order.field.basic
YaelDillies Nov 6, 2022
d03a854
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Nov 10, 2022
0a32509
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Nov 11, 2022
be4b43c
reduce diff
YaelDillies Nov 11, 2022
83497ff
partial progress
YaelDillies Feb 17, 2023
5a4e8e6
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Feb 17, 2023
991e8b3
fix algebra.field.defs
YaelDillies Feb 17, 2023
b67ffbd
fix data.rat.nnrat.defs
YaelDillies Feb 17, 2023
a425ecd
fix combinatorics.additive.pluennecke_ruzsa
YaelDillies Feb 18, 2023
726da98
fix algebra.ring.ulift?
YaelDillies Feb 18, 2023
5cabff4
import shuffling
YaelDillies Feb 19, 2023
3bbfbaa
split archimedean off
YaelDillies Feb 19, 2023
9be40f6
hopefully final import shuffling
YaelDillies Feb 19, 2023
a180e4e
import creep hell
YaelDillies Feb 19, 2023
76517ce
reduce diff
YaelDillies Mar 15, 2023
4e8754a
revert wrong docstring changes
YaelDillies Mar 15, 2023
d1d9417
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Mar 16, 2023
35762a5
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Mar 17, 2023
da091da
reduce diff
YaelDillies Mar 17, 2023
64f90fe
fix algebra.field.opposite
YaelDillies Mar 17, 2023
a382323
remove assert_not_exists
YaelDillies Mar 17, 2023
d80aa03
fix algebra.field.ulift
YaelDillies Mar 17, 2023
1fbb8a9
move commute lemmas
YaelDillies Mar 18, 2023
6e08817
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Mar 18, 2023
2e46b07
reduce diff
YaelDillies Mar 18, 2023
e5a2fe6
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Mar 19, 2023
ecb869d
Merge remote-tracking branch 'origin/master' into nnrat_cast
YaelDillies Mar 24, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 43 additions & 26 deletions src/algebra/field/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,15 @@ import algebra.ring.inj_surj
-/

open function order_dual set
open_locale nnrat

set_option old_structure_cmd true

universe u
variables {α β K : Type*}

section division_semiring
variables [division_semiring α] {a b c : α}
variables [division_semiring α] {a b c d : α}

lemma add_div (a b c : α) : (a + b) / c = a / c + b / c := by simp_rw [div_eq_mul_inv, add_mul]

Expand All @@ -50,6 +51,10 @@ by rw [add_div, mul_div_cancel _ hc]
@[field_simps] lemma div_add' (a b c : α) (hc : c ≠ 0) : a / c + b = (a + b * c) / c :=
by rwa [add_comm, add_div', add_comm]

lemma commute.div_add_div (hbc : commute b c) (hbd : commute b d) (hb : b ≠ 0) (hd : d ≠ 0) :
a / b + c / d = (a * d + b * c) / (b * d) :=
by rw [add_div, mul_div_mul_right _ b hd, hbc.eq, hbd.eq, mul_div_mul_right c d hb]

end division_semiring

section division_monoid
Expand Down Expand Up @@ -138,7 +143,7 @@ variables [semifield α] {a b c d : α}

lemma div_add_div (a : α) (c : α) (hb : b ≠ 0) (hd : d ≠ 0) :
(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) :=
by rw [← mul_div_mul_right _ b hd, ← mul_div_mul_left c d hb, div_add_div_same]
(commute.all b _).div_add_div (commute.all _ _) hb hd

lemma one_div_add_one_div (ha : a ≠ 0) (hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
by rw [div_add_div _ _ ha hb, one_mul, mul_one, add_comm]
Expand Down Expand Up @@ -206,99 +211,111 @@ end noncomputable_defs
/-- Pullback a `division_semiring` along an injective function. -/
@[reducible] -- See note [reducible non-instances]
protected def function.injective.division_semiring [division_semiring β] [has_zero α] [has_mul α]
[has_add α] [has_one α] [has_inv α] [has_div α] [has_smul ℕ α] [has_pow α ℕ] [has_pow α ]
[has_nat_cast α]
[has_add α] [has_one α] [has_inv α] [has_div α] [has_smul ℕ α] [has_smul ℚ≥0 α] [has_pow α ]
[has_pow α ℤ] [has_nat_cast α] [has_nnrat_cast α]
(f : α → β) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1)
(add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (nnqsmul : ∀ x (q : ℚ≥0), f (q • x) = q • f x)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ n : ℕ, f n = n) :
(nat_cast : ∀ n : ℕ, f n = n) (nnrat_cast : ∀ q : ℚ≥0, f q = q) :
division_semiring α :=
{ .. hf.group_with_zero f zero one mul inv div npow zpow,
{ nnrat_cast := coe,
nnrat_cast_eq := λ q, hf $ by erw [nnrat_cast, nnrat.cast_def, div, nat_cast, nat_cast],
nnqsmul := (•),
nnqsmul_eq_mul := λ a x, hf $ by erw [nnqsmul, mul, nnrat_cast, nnrat.smul_def],
.. hf.group_with_zero f zero one mul inv div npow zpow,
.. hf.semiring f zero one add mul nsmul npow nat_cast }

/-- Pullback a `division_ring` along an injective function.
See note [reducible non-instances]. -/
@[reducible]
protected def function.injective.division_ring [division_ring K] {K'}
[has_zero K'] [has_one K'] [has_add K'] [has_mul K'] [has_neg K'] [has_sub K'] [has_inv K']
[has_div K'] [has_smul ℕ K'] [has_smul ℤ K'] [has_smul ℚ K'] [has_pow K' ℕ] [has_pow K' ]
[has_nat_cast K'] [has_int_cast K'] [has_rat_cast K']
[has_div K'] [has_smul ℕ K'] [has_smul ℤ K'] [has_smul ℚ≥0 K'] [has_smul ℚ K'] [has_pow K' ]
[has_pow K' ℤ] [has_nat_cast K'] [has_int_cast K'] [has_nnrat_cast K'] [has_rat_cast K']
(f : K' → K) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1)
(add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
(neg : ∀ x, f (-x) = -f x) (sub : ∀ x y, f (x - y) = f x - f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (zsmul : ∀ x (n : ℤ), f (n • x) = n • f x)
(qsmul : ∀ x (n : ℚ), f (n • x) = n • f x)
(nnqsmul : ∀ x (q : ℚ≥0), f (q • x) = q • f x) (qsmul : ∀ x (q : ℚ), f (q • x) = q • f x)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) (rat_cast : ∀ n : ℚ, f n = n) :
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) (nnrat_cast : ∀ q : ℚ≥0, f q = q)
(rat_cast : ∀ q : ℚ, f q = q) :
division_ring K' :=
{ rat_cast := coe,
rat_cast_mk := λ a b h1 h2, hf (by erw [rat_cast, mul, inv, int_cast, nat_cast];
exact division_ring.rat_cast_mk a b h1 h2),
qsmul := (•),
qsmul_eq_mul' := λ a x, hf (by erw [qsmul, mul, rat.smul_def, rat_cast]),
.. hf.group_with_zero f zero one mul inv div npow zpow,
.. hf.division_semiring f zero one add mul inv div nsmul nnqsmul npow zpow nat_cast nnrat_cast,
.. hf.ring f zero one add mul neg sub nsmul zsmul npow nat_cast int_cast }

/-- Pullback a `field` along an injective function. -/
@[reducible] -- See note [reducible non-instances]
protected def function.injective.semifield [semifield β] [has_zero α] [has_mul α] [has_add α]
[has_one α] [has_inv α] [has_div α] [has_smul ℕ α] [has_pow α ℕ] [has_pow α ℤ]
[has_nat_cast α]
[has_one α] [has_inv α] [has_div α] [has_smul ℕ α] [has_smul ℚ≥0 α] [has_pow α ℕ] [has_pow α ℤ]
[has_nat_cast α] [has_nnrat_cast α]
(f : α → β) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1)
(add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (nnqsmul : ∀ x (q : ℚ≥0), f (q • x) = q • f x)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ n : ℕ, f n = n) :
(nat_cast : ∀ n : ℕ, f n = n) (nnrat_cast : ∀ q : ℚ≥0, f q = q) :
semifield α :=
{ .. hf.comm_group_with_zero f zero one mul inv div npow zpow,
{ .. hf.division_semiring f zero one add mul inv div nsmul nnqsmul npow zpow nat_cast nnrat_cast,
.. hf.comm_semiring f zero one add mul nsmul npow nat_cast }

/-- Pullback a `field` along an injective function.
See note [reducible non-instances]. -/
@[reducible]
protected def function.injective.field [field K] {K'}
[has_zero K'] [has_mul K'] [has_add K'] [has_neg K'] [has_sub K'] [has_one K'] [has_inv K']
[has_div K'] [has_smul ℕ K'] [has_smul ℤ K'] [has_smul ℚ K'] [has_pow K' ℕ] [has_pow K' ]
[has_nat_cast K'] [has_int_cast K'] [has_rat_cast K']
[has_div K'] [has_smul ℕ K'] [has_smul ℤ K'] [has_smul ℚ≥0 K'] [has_smul ℚ K'] [has_pow K' ]
[has_pow K' ℤ] [has_nat_cast K'] [has_int_cast K'] [has_nnrat_cast K'] [has_rat_cast K']
(f : K' → K) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1)
(add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
(neg : ∀ x, f (-x) = -f x) (sub : ∀ x y, f (x - y) = f x - f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (zsmul : ∀ x (n : ℤ), f (n • x) = n • f x)
(qsmul : ∀ x (n : ℚ), f (n • x) = n • f x)
(nnqsmul : ∀ x (q : ℚ≥0), f (q • x) = q • f x) (qsmul : ∀ x (q : ℚ), f (q • x) = q • f x)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) (rat_cast : ∀ n : ℚ, f n = n) :
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) (nnrat_cast : ∀ q : ℚ≥0, f q = q)
(rat_cast : ∀ q : ℚ, f q = q) :
field K' :=
{ rat_cast := coe,
rat_cast_mk := λ a b h1 h2, hf (by erw [rat_cast, mul, inv, int_cast, nat_cast];
exact division_ring.rat_cast_mk a b h1 h2),
qsmul := (•),
qsmul_eq_mul' := λ a x, hf (by erw [qsmul, mul, rat.smul_def, rat_cast]),
.. hf.comm_group_with_zero f zero one mul inv div npow zpow,
.. hf.division_semiring f zero one add mul inv div nsmul nnqsmul npow zpow nat_cast nnrat_cast,
.. hf.comm_ring f zero one add mul neg sub nsmul zsmul npow nat_cast int_cast }

/-! ### Order dual -/

instance [h : has_nnrat_cast α] : has_nnrat_cast αᵒᵈ := h
instance [h : has_rat_cast α] : has_rat_cast αᵒᵈ := h
instance [h : division_semiring α] : division_semiring αᵒᵈ := h
instance [h : division_ring α] : division_ring αᵒᵈ := h
instance [h : semifield α] : semifield αᵒᵈ := h
instance [h : field α] : field αᵒᵈ := h

@[simp] lemma to_dual_rat_cast [has_rat_cast α] (n : ℚ) : to_dual (n : α) = n := rfl
@[simp] lemma of_dual_rat_cast [has_rat_cast α] (n : ℚ) : (of_dual n : α) = n := rfl
@[simp] lemma to_dual_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : to_dual (q : α) = q := rfl
@[simp] lemma of_dual_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : (of_dual ↑q : α) = q := rfl
@[simp] lemma to_dual_rat_cast [has_rat_cast α] (q : ℚ) : to_dual (q : α) = q := rfl
@[simp] lemma of_dual_rat_cast [has_rat_cast α] (q : ℚ) : (of_dual q : α) = q := rfl

/-! ### Lexicographic order -/

instance [h : has_nnrat_cast α] : has_nnrat_cast (lex α) := h
instance [h : has_rat_cast α] : has_rat_cast (lex α) := h
instance [h : division_semiring α] : division_semiring (lex α) := h
instance [h : division_ring α] : division_ring (lex α) := h
instance [h : semifield α] : semifield (lex α) := h
instance [h : field α] : field (lex α) := h

@[simp] lemma to_lex_rat_cast [has_rat_cast α] (n : ℚ) : to_lex (n : α) = n := rfl
@[simp] lemma of_lex_rat_cast [has_rat_cast α] (n : ℚ) : (of_lex n : α) = n := rfl
@[simp] lemma to_lex_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : to_lex (q : α) = q := rfl
@[simp] lemma of_lex_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : (of_lex ↑q : α) = q := rfl
@[simp] lemma to_lex_rat_cast [has_rat_cast α] (q : ℚ) : to_lex (q : α) = q := rfl
@[simp] lemma of_lex_rat_cast [has_rat_cast α] (q : ℚ) : (of_lex q : α) = q := rfl
63 changes: 42 additions & 21 deletions src/algebra/field/defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@ Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Johannes Hölzl, Mario Carneiro
-/
import data.rat.init
import algebra.ring.defs
import data.rat.nnrat.defs

/-!
# Division (semi)rings and (semi)fields
Expand Down Expand Up @@ -47,6 +47,7 @@ field, division ring, skew field, skew-field, skewfield
-/

open function set
open_locale nnrat

set_option old_structure_cmd true

Expand All @@ -57,8 +58,8 @@ variables {α β K : Type*}
is defined as `(a / b : K) = (a : K) * (b : K)⁻¹`.
Use `coe` instead of `rat.cast_rec` for better definitional behaviour.
-/
def rat.cast_rec [has_lift_t ℕ K] [has_lift_t ℤ K] [has_mul K] [has_inv K] : ℚ → K
| ⟨a, b, _, _⟩ := ↑a * (↑b)⁻¹
def rat.cast_rec [has_lift_t ℕ K] [has_lift_t ℤ K] [has_mul K] [has_inv K] : ℚ → K :=
λ q, ↑q.1 * (↑q.2)⁻¹

/--
Type class for the canonical homomorphism `ℚ → K`.
Expand All @@ -67,6 +68,17 @@ Type class for the canonical homomorphism `ℚ → K`.
class has_rat_cast (K : Type u) :=
(rat_cast : ℚ → K)

/-- Construct the canonical injection from `ℚ` into an arbitrary division ring. If the field has
positive characteristic `p`, we define `1 / p = 1 / 0 = 0` for consistency with our division by zero
convention. -/
@[priority 900] -- see Note [coercion into rings]
instance rat.cast_coe {K : Type*} [has_rat_cast K] : has_coe_t ℚ K := ⟨has_rat_cast.rat_cast⟩

/-- The default definition of the scalar multiplication `(a : ℚ≥0) • (x : K)` for a division
semiring `K` is given by `a • x = (↑ a) * x`.
Use `(a : ℚ≥0) • (x : K)` instead of `qsmul_rec` for better definitional behaviour. -/
def nnqsmul_rec (coe : ℚ≥0 → K) [has_mul K] (a : ℚ≥0) (x : K) : K := coe a * x

/-- The default definition of the scalar multiplication `(a : ℚ) • (x : K)` for a division ring `K`
is given by `a • x = (↑ a) * x`.
Use `(a : ℚ) • (x : K)` instead of `qsmul_rec` for better definitional behaviour.
Expand All @@ -76,7 +88,11 @@ coe a * x

/-- A `division_semiring` is a `semiring` with multiplicative inverses for nonzero elements. -/
@[protect_proj, ancestor semiring group_with_zero]
class division_semiring (α : Type*) extends semiring α, group_with_zero α
class division_semiring (α : Type u) extends semiring α, group_with_zero α, has_nnrat_cast α :=
(nnrat_cast := nnrat.cast_rec)
(nnrat_cast_eq : ∀ q, nnrat_cast q = q.num / q.denom . try_refl_tac)
(nnqsmul : ℚ≥0 → α → α := nnqsmul_rec nnrat_cast)
(nnqsmul_eq_mul : ∀ a x, nnqsmul a x = nnrat_cast a * x . try_refl_tac)

/-- A `division_ring` is a `ring` with multiplicative inverses for nonzero elements.

Expand All @@ -89,9 +105,14 @@ definitions for some special cases of `K` (in particular `K = ℚ` itself).
See also Note [forgetful inheritance].
-/
@[protect_proj, ancestor ring div_inv_monoid nontrivial]
class division_ring (K : Type u) extends ring K, div_inv_monoid K, nontrivial K, has_rat_cast K :=
class division_ring (K : Type u)
extends ring K, div_inv_monoid K, nontrivial K, has_nnrat_cast K, has_rat_cast K :=
(mul_inv_cancel : ∀ {a : K}, a ≠ 0 → a * a⁻¹ = 1)
(inv_zero : (0 : K)⁻¹ = 0)
(nnrat_cast := nnrat.cast_rec)
(nnrat_cast_eq : ∀ q, nnrat_cast q = q.num / q.denom . try_refl_tac)
(nnqsmul : ℚ≥0 → K → K := nnqsmul_rec nnrat_cast)
(nnqsmul_eq_mul : ∀ a x, nnqsmul a x = nnrat_cast a * x . try_refl_tac)
(rat_cast := rat.cast_rec)
(rat_cast_mk : ∀ (a : ℤ) (b : ℕ) h1 h2, rat_cast ⟨a, b, h1, h2⟩ = a * b⁻¹ . try_refl_tac)
(qsmul : ℚ → K → K := qsmul_rec rat_cast)
Expand All @@ -107,29 +128,31 @@ class semifield (α : Type*) extends comm_semiring α, division_semiring α, com

/-- A `field` is a `comm_ring` with multiplicative inverses for nonzero elements.

An instance of `field K` includes maps `of_rat : ℚ → K` and `qsmul : ℚ → K → K`.
If the field has positive characteristic p, we define `of_rat (1 / p) = 1 / 0 = 0`
An instance of `field K` includes maps `rat_cast : ℚ → K` and `qsmul : ℚ → K → K`.
If the field has positive characteristic p, we define `rat_cast (1 / p) = 1 / 0 = 0`
for consistency with our division by zero convention.
The fields `of_rat` and `qsmul are needed to implement the
The fields `rat_cast` and `qsmul are needed to implement the
`algebra_rat [division_ring K] : algebra ℚ K` instance, since we need to control the specific
definitions for some special cases of `K` (in particular `K = ℚ` itself).
See also Note [forgetful inheritance].
-/
@[protect_proj, ancestor comm_ring div_inv_monoid nontrivial]
class field (K : Type u) extends comm_ring K, division_ring K

section division_ring
variables [division_ring K] {a b : K}
namespace nnrat
variables [division_semiring α] {a : α}

namespace rat
lemma cast_def : ∀ q : ℚ≥0, (q : α) = q.num / q.denom := division_semiring.nnrat_cast_eq

@[priority 100]
instance division_semiring.to_has_nnqsmul : has_smul ℚ≥0 α := ⟨division_semiring.nnqsmul⟩

/-- Construct the canonical injection from `ℚ` into an arbitrary
division ring. If the field has positive characteristic `p`,
we define `1 / p = 1 / 0 = 0` for consistency with our
division by zero convention. -/
-- see Note [coercion into rings]
@[priority 900] instance cast_coe {K : Type*} [has_rat_cast K] : has_coe_t ℚ K :=
⟨has_rat_cast.rat_cast⟩
lemma smul_def : ∀ (q : ℚ≥0) (a : α), q • a = ↑q * a := division_semiring.nnqsmul_eq_mul

end nnrat

namespace rat
variables [division_ring K] {a b : K}

theorem cast_mk' (a b h1 h2) : ((⟨a, b, h1, h2⟩ : ℚ) : K) = a * b⁻¹ :=
division_ring.rat_cast_mk _ _ _ _
Expand All @@ -138,15 +161,13 @@ theorem cast_def : ∀ (r : ℚ), (r : K) = r.num / r.denom
| ⟨a, b, h1, h2⟩ := (cast_mk' _ _ _ _).trans (div_eq_mul_inv _ _).symm

@[priority 100]
instance smul_division_ring : has_smul ℚ K :=
instance division_ring.to_has_qsmul : has_smul ℚ K :=
⟨division_ring.qsmul⟩

lemma smul_def (a : ℚ) (x : K) : a • x = ↑a * x := division_ring.qsmul_eq_mul' a x

end rat

end division_ring

section field

variable [field K]
Expand Down
55 changes: 46 additions & 9 deletions src/algebra/field/opposite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,28 +13,65 @@ import algebra.ring.opposite
> Any changes to this file require a corresponding PR to mathlib4.
-/

variables (α : Type*)
open_locale nnrat

variables {α : Type*}

namespace mul_opposite

@[to_additive] instance [has_nnrat_cast α] : has_nnrat_cast αᵐᵒᵖ := ⟨λ n, op n⟩
@[to_additive] instance [has_rat_cast α] : has_rat_cast αᵐᵒᵖ := ⟨λ n, op n⟩

@[simp, norm_cast, to_additive]
lemma op_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : op (q : α) = q := rfl

@[simp, norm_cast, to_additive]
lemma unop_nnrat_cast [has_nnrat_cast α] (q : ℚ≥0) : unop (q : αᵐᵒᵖ) = q := rfl

@[simp, norm_cast, to_additive]
lemma op_rat_cast [has_rat_cast α] (q : ℚ) : op (q : α) = q := rfl

@[simp, norm_cast, to_additive]
lemma unop_rat_cast [has_rat_cast α] (q : ℚ) : unop (q : αᵐᵒᵖ) = q := rfl

instance [division_semiring α] : division_semiring αᵐᵒᵖ :=
{ .. mul_opposite.group_with_zero α, .. mul_opposite.semiring α }
{ nnrat_cast := λ q, op q,
nnrat_cast_eq := λ q, by { rw [nnrat.cast_def, op_div, op_nat_cast, op_nat_cast, div_eq_mul_inv],
exact nat.commute_cast _ _ },
.. mul_opposite.group_with_zero α, .. mul_opposite.semiring α }

instance [division_ring α] : division_ring αᵐᵒᵖ :=
{ .. mul_opposite.group_with_zero α, .. mul_opposite.ring α }
{ rat_cast := λ q, op q,
rat_cast_mk := λ a b hb h, by { rw [rat.cast_def, op_div, op_nat_cast, op_int_cast],
exact int.commute_cast _ _ },
..mul_opposite.division_semiring, ..mul_opposite.ring α }

instance [semifield α] : semifield αᵐᵒᵖ :=
{ .. mul_opposite.division_semiring α, .. mul_opposite.comm_semiring α }
{ ..mul_opposite.division_semiring, ..mul_opposite.comm_semiring α }

instance [field α] : field αᵐᵒᵖ :=
{ .. mul_opposite.division_ring α, .. mul_opposite.comm_ring α }
{ ..mul_opposite.division_ring, ..mul_opposite.comm_ring α }

end mul_opposite

namespace add_opposite

instance [division_semiring α] : division_semiring αᵃᵒᵖ :=
{ ..add_opposite.group_with_zero α, ..add_opposite.semiring α }
{ nnrat_cast := λ q, op q,
nnrat_cast_eq := λ q, by { rw [nnrat.cast_def, op_div, op_nat_cast, op_nat_cast] },
..add_opposite.group_with_zero α, ..add_opposite.semiring α, ..add_opposite.has_nnrat_cast }

instance [division_ring α] : division_ring αᵃᵒᵖ :=
{ ..add_opposite.group_with_zero α, ..add_opposite.ring α }
{ nnrat_cast := coe,
nnrat_cast_eq := λ q, unop_injective q.cast_def,
nnqsmul := λ q a, op $ q • unop a,
nnqsmul_eq_mul := λ q a, by simp only [nnrat.smul_def, op_mul, op_nnrat_cast, op_unop],
..add_opposite.group_with_zero α, ..add_opposite.ring α }

instance [semifield α] : semifield αᵃᵒᵖ :=
{ ..add_opposite.division_semiring α, ..add_opposite.comm_semiring α }
{ ..add_opposite.division_semiring, ..add_opposite.comm_semiring α }

instance [field α] : field αᵃᵒᵖ :=
{ ..add_opposite.division_ring α, ..add_opposite.comm_ring α }
{ ..add_opposite.division_ring, ..add_opposite.comm_ring α }

end add_opposite
Loading