Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

[Merged by Bors] - fix(data/set/function): do not use reducible #12377

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions src/data/set/function.lean
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,7 @@ end order
/-! ### maps to -/

/-- `maps_to f a b` means that the image of `a` is contained in `b`. -/
@[reducible] def maps_to (f : α → β) (s : set α) (t : set β) : Prop := ∀ ⦃x⦄, x ∈ s → f x ∈ t
def maps_to (f : α → β) (s : set α) (t : set β) : Prop := ∀ ⦃x⦄, x ∈ s → f x ∈ t

/-- Given a map `f` sending `s : set α` into `t : set β`, restrict domain of `f` to `s`
and the codomain to `t`. Same as `subtype.map`. -/
Expand Down Expand Up @@ -325,7 +325,7 @@ theorem maps_to.mem_iff (h : maps_to f s t) (hc : maps_to f sᶜ tᶜ) {x} : f x
/-! ### Injectivity on a set -/

/-- `f` is injective on `a` if the restriction of `f` to `a` is injective. -/
@[reducible] def inj_on (f : α → β) (s : set α) : Prop :=
def inj_on (f : α → β) (s : set α) : Prop :=
∀ ⦃x₁ : α⦄, x₁ ∈ s → ∀ ⦃x₂ : α⦄, x₂ ∈ s → f x₁ = f x₂ → x₁ = x₂

theorem subsingleton.inj_on (hs : s.subsingleton) (f : α → β) : inj_on f s :=
Expand Down Expand Up @@ -414,7 +414,7 @@ lemma inj_on.cancel_left (hg : t.inj_on g) (hf₁ : s.maps_to f₁ t) (hf₂ : s
/-! ### Surjectivity on a set -/

/-- `f` is surjective from `a` to `b` if `b` is contained in the image of `a`. -/
@[reducible] def surj_on (f : α → β) (s : set α) (t : set β) : Prop := t ⊆ f '' s
def surj_on (f : α → β) (s : set α) (t : set β) : Prop := t ⊆ f '' s

theorem surj_on.subset_range (h : surj_on f s t) : t ⊆ range f :=
subset.trans h $ image_subset_range f s
Expand Down Expand Up @@ -508,7 +508,7 @@ lemma eq_on_comp_right_iff : s.eq_on (g₁ ∘ f) (g₂ ∘ f) ↔ (f '' s).eq_o
/-! ### Bijectivity -/

/-- `f` is bijective from `s` to `t` if `f` is injective on `s` and `f '' s = t`. -/
@[reducible] def bij_on (f : α → β) (s : set α) (t : set β) : Prop :=
def bij_on (f : α → β) (s : set α) (t : set β) : Prop :=
maps_to f s t ∧ inj_on f s ∧ surj_on f s t

lemma bij_on.maps_to (h : bij_on f s t) : maps_to f s t := h.left
Expand Down Expand Up @@ -572,7 +572,7 @@ lemma bij_on.compl (hst : bij_on f s t) (hf : bijective f) : bij_on f sᶜ tᶜ
/-! ### left inverse -/

/-- `g` is a left inverse to `f` on `a` means that `g (f x) = x` for all `x ∈ a`. -/
@[reducible] def left_inv_on (f' : β → α) (f : α → β) (s : set α) : Prop :=
def left_inv_on (f' : β → α) (f : α → β) (s : set α) : Prop :=
∀ ⦃x⦄, x ∈ s → f' (f x) = x

lemma left_inv_on.eq_on (h : left_inv_on f' f s) : eq_on (f' ∘ f) id s := h
Expand Down Expand Up @@ -688,7 +688,7 @@ theorem surj_on.left_inv_on_of_right_inv_on (hf : surj_on f s t) (hf' : right_in
/-! ### Two-side inverses -/

/-- `g` is an inverse to `f` viewed as a map from `a` to `b` -/
@[reducible] def inv_on (g : β → α) (f : α → β) (s : set α) (t : set β) : Prop :=
def inv_on (g : β → α) (f : α → β) (s : set α) (t : set β) : Prop :=
left_inv_on g f s ∧ right_inv_on g f t

lemma inv_on.symm (h : inv_on f' f s t) : inv_on f f' t s := ⟨h.right, h.left⟩
Expand Down
2 changes: 1 addition & 1 deletion src/logic/function/basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -674,7 +674,7 @@ end involutive
/-- The property of a binary function `f : α → β → γ` being injective.
Mathematically this should be thought of as the corresponding function `α × β → γ` being injective.
-/
@[reducible] def injective2 {α β γ} (f : α → β → γ) : Prop :=
def injective2 {α β γ} (f : α → β → γ) : Prop :=
∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂

namespace injective2
Expand Down