This repository has been archived by the owner on Jul 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 298
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9a626b4
commit 5f19236
Showing
1 changed file
with
61 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,40 +1,79 @@ | ||
import field_theory.galois | ||
|
||
lemma normal_iff_fixing (F L : Type*) | ||
lemma normal_iff_stabilizing {F L : Type*} | ||
[field F] [field L] [algebra F L] [is_galois F L] | ||
(K : intermediate_field F L) : | ||
[finite_dimensional F L] (K : intermediate_field F L) : | ||
K.fixing_subgroup.normal ↔ ∀ (g : L ≃ₐ[F] L) (x : L), x ∈ K → g • x ∈ K := | ||
begin | ||
split, | ||
{ | ||
sorry | ||
intros hk_normal g x hxk, | ||
have hk_fixing := is_galois.fixed_field_fixing_subgroup K, | ||
rw ← hk_fixing, | ||
rw intermediate_field.fixed_field, | ||
rw fixed_points.intermediate_field, | ||
dsimp, | ||
rintro ⟨ϕ, hϕ⟩, | ||
change ϕ (g x) = g x, | ||
suffices: g⁻¹ (ϕ (g x)) = x, | ||
{ | ||
apply_fun g at this, | ||
rw ←alg_equiv.mul_apply at this, | ||
simpa, | ||
}, | ||
have := hk_normal.conj_mem ϕ hϕ g⁻¹ ⟨x, hxk⟩, | ||
simpa, | ||
}, | ||
{ | ||
|
||
intro hgfix, | ||
refine ⟨λ n hn g x, _⟩, | ||
rw [mul_smul, mul_smul], | ||
have hx := hgfix g⁻¹ x x.mem, | ||
specialize hn ⟨g⁻¹ • x, hx⟩, | ||
rw subtype.coe_mk at hn, | ||
rw [hn, smul_inv_smul], | ||
}, | ||
end | ||
|
||
theorem normal_correspondence (F L : Type*) | ||
lemma stabilizing_iff_res_stabilizing {F L : Type*} | ||
[field F] [field L] [algebra F L] [is_galois F L] | ||
(K : intermediate_field F L) : | ||
normal F K ↔ K.fixing_subgroup.normal := | ||
[finite_dimensional F L] (K : intermediate_field F L) : | ||
(∀ (g : L →ₐ[F] L) (x : L), x ∈ K → g x ∈ K) ↔ (∀ (g : K →ₐ[F] L) (x : K), g x ∈ K) := | ||
begin | ||
split, | ||
{ intro normal_fk, | ||
-- rw normal_iff at normal_fk, | ||
refine ⟨λ n hn g x, _⟩, | ||
have hx_normal := normal.splits normal_fk x, | ||
have hx : g⁻¹ • (x : L) ∈ K := sorry, | ||
specialize hn ⟨g⁻¹ • x, hx⟩, | ||
rw subtype.coe_mk at hn, | ||
rw [mul_smul, mul_smul, hn], | ||
rw smul_inv_smul, }, | ||
{ intro hk_normal, | ||
have hk_conj := hk_normal.conj_mem, | ||
rw normal_iff, | ||
intro x, | ||
rw intermediate_field.is_integral_iff, | ||
refine ⟨is_galois.integral F (x : L), _⟩, | ||
{ | ||
intros hL g x, | ||
have hgliftcomm := alg_hom.lift_normal_commutes g L x, | ||
change g.lift_normal L x = g x at hgliftcomm, | ||
rw ← hgliftcomm, | ||
apply hL, | ||
exact x.mem, | ||
}, | ||
{ | ||
intros hK g x hxk, | ||
have gres := g ∘ K.val, | ||
}, | ||
end | ||
|
||
lemma stabilizing_iff_normal_ext {F L : Type*} | ||
[field F] [field L] [algebra F L] [is_galois F L] | ||
[finite_dimensional F L] (K : intermediate_field F L) : | ||
(∀ (g : L ≃ₐ[F] L) (x : L), x ∈ K → g • x ∈ K) ↔ normal F K := | ||
begin | ||
split, | ||
{ | ||
sorry, | ||
}, | ||
{ | ||
-- intros hsplit g, | ||
sorry, | ||
}, | ||
end | ||
|
||
theorem normal_correspondence (F L : Type*) | ||
[field F] [field L] [algebra F L] [is_galois F L] | ||
[finite_dimensional F L] (K : intermediate_field F L) : | ||
normal F K ↔ K.fixing_subgroup.normal := | ||
begin | ||
rw [normal_iff_stabilizing, stabilizing_iff_normal_ext], | ||
end |