Skip to content

Commit

Permalink
Merge pull request #19 from leanprover-community/bump/v4.7.0
Browse files Browse the repository at this point in the history
adaptations required for nightly-2024-02-18
  • Loading branch information
PratherConid authored Mar 13, 2024
2 parents 8d24ffa + ba9ad2d commit 39634b8
Show file tree
Hide file tree
Showing 6 changed files with 21 additions and 22 deletions.
1 change: 0 additions & 1 deletion Auto/Embedding/Lift.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
import Std.Data.Int.Basic
import Std.Data.BitVec.Basic
import Auto.Lib.IsomType
import Auto.Lib.StringExtra
Expand Down
6 changes: 3 additions & 3 deletions Auto/Lib/HList.lean
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ theorem HList.nil_IsomType : IsomType (HList β .nil) PUnit :=
fun x => match x with | .nil => rfl, fun _ => rfl⟩

theorem HList.cons_IsomType : IsomType (HList β (a :: as)) (β a × HList β as) :=
fun xs => match xs with | .cons x xs => (x, xs), fun (x, xs) => .cons x xs,
fun xs => match xs with | .cons x xs => (x, xs), fun (x, xs) => .cons x xs,
fun xs => match xs with | .cons _ _ => rfl,
fun (_, _) => rfl⟩

Expand Down Expand Up @@ -72,7 +72,7 @@ theorem HList.append_assoc (xs : HList β as) (ys : HList β bs) (zs : HList β
case Hβ => rw [List.append_assoc]
case h₁ =>
apply congr_hd_heq <;> try apply HEq.rfl;
rw [List.append_assoc]; apply HEq.rfl
rw [List.append_assoc]
case h₂ => apply HEq.rfl
case h₂ => exact IH

Expand Down Expand Up @@ -176,4 +176,4 @@ theorem HList.reverse_cons {x : β a} {xs : HList β as} :
HEq ((HList.cons x xs).reverse) (xs.reverse.append (.cons x .nil)) :=
reverseAux_eq_append (xs:=xs) (ys:=.cons x .nil)

end Auto
end Auto
28 changes: 14 additions & 14 deletions Auto/Lib/NatExtra.lean
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ theorem Nat.le_pow (h : b ≥ 2) : a < b ^ a := by
rw [Nat.testBit_to_div_mod, decide_eq_true_iff]; apply Iff.intro <;> intro h
case mp =>
have ⟨k, hk⟩ := Nat.mod_par h; clear h
have ⟨r, ⟨er, lr⟩⟩ := Nat.div_par hk (Nat.pow_two_pos _); clear hk; cases er
have ⟨r, ⟨er, lr⟩⟩ := Nat.div_par hk (Nat.two_pow_pos _); clear hk; cases er
have eqi : 2 ^ i * (2 * k + 1) + r = 2 ^ (i + 1) * k + (2 ^ i + r) := by
rw [Nat.mul_add _ _ 1, ← Nat.mul_assoc, Nat.pow_add, Nat.add_assoc]; simp
rw [eqi, Nat.mul_add_mod]
Expand All @@ -213,13 +213,13 @@ theorem Nat.le_pow (h : b ≥ 2) : a < b ^ a := by
rw [Nat.mod_eq_of_lt elt]; apply Nat.le_add_right
case mpr =>
generalize ek : a % 2 ^ (i + 1) = k at h
have lk : k < 2 ^ (i + 1) := by cases ek; apply Nat.mod_lt; apply Nat.pow_two_pos
have lk : k < 2 ^ (i + 1) := by cases ek; apply Nat.mod_lt; apply Nat.two_pow_pos
have ⟨l, hl⟩ := Nat.mod_par ek; clear ek; cases hl
have eqi : 2 ^ (i + 1) * l + k = 2 ^ i * (2 * l) + k := by
rw [Nat.pow_add, Nat.mul_assoc]; simp
rw [eqi, Nat.mul_add_div (Nat.pow_two_pos _), Nat.mul_add_mod]
have kdge : k / (2 ^ i) > 0 := (Nat.le_div_iff_mul_le (Nat.pow_two_pos _)).mpr (by simp [h])
have kdle : k / (2 ^ i) < 2 := (Nat.div_lt_iff_lt_mul (Nat.pow_two_pos _)).mpr (by rw [Nat.pow_add, Nat.mul_comm] at lk; apply lk)
rw [eqi, Nat.mul_add_div (Nat.two_pow_pos _), Nat.mul_add_mod]
have kdge : k / (2 ^ i) > 0 := (Nat.le_div_iff_mul_le (Nat.two_pow_pos _)).mpr (by simp [h])
have kdle : k / (2 ^ i) < 2 := (Nat.div_lt_iff_lt_mul (Nat.two_pow_pos _)).mpr (by rw [Nat.pow_add, Nat.mul_comm] at lk; apply lk)
have kone : k / (2 ^ i) = 1 := Nat.eq_iff_le_and_ge.mpr (And.intro (Nat.le_of_succ_le_succ kdle) kdge)
rw [kone]; rfl

Expand All @@ -230,17 +230,17 @@ theorem Nat.le_pow (h : b ≥ 2) : a < b ^ a := by
rw [Nat.testBit_true_iff]; have ⟨k, ek⟩ := Nat.lt_par h; clear h; cases ek
have eqi : 2 ^ (i + 1 + k) - 1 = 2 ^ (i + 1) * (2 ^ k - 1) + (2 ^ (i + 1) - 1) := calc
_ = 2 ^ (i + 1) * 2 ^ k - 1 := by rw [Nat.pow_add]
_ = 2 ^ (i + 1) * (2 ^ k - 1 + 1) - 1 := by rw [Nat.sub_add_cancel]; apply Nat.pow_two_pos
_ = 2 ^ (i + 1) * (2 ^ k - 1 + 1) - 1 := by rw [Nat.sub_add_cancel]; apply Nat.two_pow_pos
_ = _ := by
have hle : 12 ^ (i + 1) * 1 := by rw [Nat.mul_one]; apply Nat.pow_two_pos
have hle : 12 ^ (i + 1) * 1 := by rw [Nat.mul_one]; apply Nat.two_pow_pos
rw [Nat.mul_add]; rw [Nat.add_sub_assoc hle]; simp
rw [eqi, Nat.mul_add_mod, Nat.mod_eq_of_lt (Nat.sub_lt (Nat.pow_two_pos _) .refl)]
rw [eqi, Nat.mul_add_mod, Nat.mod_eq_of_lt (Nat.sub_lt (Nat.two_pow_pos _) .refl)]
rw [Nat.pow_add, show (2 ^ 1 = 2) by rfl, Nat.mul_two, show (Nat.succ 0 = 1) by rfl]
rw [Nat.add_sub_assoc (Nat.pow_two_pos _)]; apply Nat.le_add_right
rw [Nat.add_sub_assoc (Nat.two_pow_pos _)]; apply Nat.le_add_right

theorem Nat.ones_testBit_false_of_ge (n i : Nat) (h : i ≥ n) : (2 ^ n - 1).testBit i = false := by
have hl : 2 ^ n - 1 < 2 ^ i := by
rw [Nat.lt_eq_succ_le, Nat.succ_eq_add_one, Nat.sub_add_cancel (Nat.pow_two_pos _)]
rw [Nat.lt_eq_succ_le, Nat.succ_eq_add_one, Nat.sub_add_cancel (Nat.two_pow_pos _)]
apply Nat.pow_le_pow_of_le_right (Nat.le_step .refl) h
have hls : 2 ^ i ≤ 2 ^ (i + 1) := Nat.pow_le_pow_of_le_right (Nat.le_step .refl) (Nat.le_add_right _ _)
rw [Nat.testBit_false_iff]; rw [Nat.mod_eq_of_lt (Nat.le_trans hl hls)]; apply hl
Expand Down Expand Up @@ -274,15 +274,15 @@ theorem Nat.le_pow (h : b ≥ 2) : a < b ^ a := by
rw [Nat.ones_testBit_true_of_lt _ _ hl]
rw [show (∀ b, (true != b) = !b) by (intro b; simp)]
generalize hk : a % 2 ^ (i + 1) = k
have kl : k < 2 ^ (i + 1) := by rw [← hk]; apply Nat.mod_lt; apply Nat.pow_two_pos
have kl : k < 2 ^ (i + 1) := by rw [← hk]; apply Nat.mod_lt; apply Nat.two_pow_pos
have tr : (2 ^ n - 1 - a) % 2 ^ (i + 1) = 2 ^ (i + 1) - (k + 1) := by
rw [Nat.sub_mod _ _ _ (show a ≤ 2 ^ n - 1 by exact (Nat.le_sub_iff_add_le (Nat.pow_two_pos _)).mpr h)]
rw [Nat.sub_mod _ _ _ (show a ≤ 2 ^ n - 1 by exact (Nat.le_sub_iff_add_le (Nat.two_pow_pos _)).mpr h)]
rw [hk]; have ⟨dn, hdn⟩ := Nat.lt_par hl; cases hdn
rw [Nat.pow_add _ _ dn, show (2 ^ dn = 2 ^ dn - 1 + 1) by rw[Nat.sub_add_cancel (Nat.pow_two_pos _)]]
rw [Nat.pow_add _ _ dn, show (2 ^ dn = 2 ^ dn - 1 + 1) by rw[Nat.sub_add_cancel (Nat.two_pow_pos _)]]
rw [Nat.mul_add, Nat.mul_one, ← Nat.sub_add_eq]
rw [Nat.add_sub_assoc (by rw [Nat.add_comm]; exact kl)]
rw [Nat.mul_add_mod, Nat.mod_eq_of_lt, Nat.add_comm 1 k]
apply Nat.sub_lt (Nat.pow_two_pos _)
apply Nat.sub_lt (Nat.two_pow_pos _)
rw [Nat.add_comm]; apply Nat.zero_lt_succ
cases hai : Nat.testBit a i
case false =>
Expand Down
4 changes: 2 additions & 2 deletions lake-manifest.json
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,10 @@
[{"url": "https://github.com/leanprover/std4.git",
"type": "git",
"subDir": null,
"rev": "f697bda1b4764a571042fed030690220c66ac4b2",
"rev": "bfa9e0827f3011b17d6d849546105ec8c64a265c",
"name": "std",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
"inputRev": "nightly-testing-2024-02-18",
"inherited": false,
"configFile": "lakefile.lean"}],
"name": "auto",
Expand Down
2 changes: 1 addition & 1 deletion lakefile.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ package «auto» {
}

require std from git
"https://github.com/leanprover/std4.git"@"main"
"https://github.com/leanprover/std4.git"@"nightly-testing-2024-02-18"

@[default_target]
lean_lib «Auto» {
Expand Down
2 changes: 1 addition & 1 deletion lean-toolchain
Original file line number Diff line number Diff line change
@@ -1 +1 @@
leanprover/lean4:v4.6.0-rc1
leanprover/lean4:nightly-2024-02-18

0 comments on commit 39634b8

Please sign in to comment.