Skip to content

Commit

Permalink
fix: naming convention
Browse files Browse the repository at this point in the history
  • Loading branch information
fgdorais committed Jun 20, 2024
1 parent 54f99fb commit 41fee2e
Showing 1 changed file with 10 additions and 10 deletions.
20 changes: 10 additions & 10 deletions Batteries/Data/UInt.lean
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ theorem UInt8.max_def (x y : UInt8) : max x y = if x ≤ y then y else x := rfl

theorem UInt8.min_def (x y : UInt8) : min x y = if x ≤ y then x else y := rfl

theorem UInt8.max_toNat (x y : UInt8) : (max x y).toNat = max x.toNat y.toNat := by
theorem UInt8.toNat_max (x y : UInt8) : (max x y).toNat = max x.toNat y.toNat := by
rw [max_def]
split
· next h =>
Expand All @@ -52,7 +52,7 @@ theorem UInt8.max_toNat (x y : UInt8) : (max x y).toNat = max x.toNat y.toNat :=
rw [le_iff_toNat_le_toNat] at h
rw [Nat.max_eq_left (Nat.le_of_not_ge h)]

theorem UInt8.min_toNat (x y : UInt8) : (min x y).toNat = min x.toNat y.toNat := by
theorem UInt8.toNat_min (x y : UInt8) : (min x y).toNat = min x.toNat y.toNat := by
rw [min_def]
split
· next h =>
Expand Down Expand Up @@ -99,7 +99,7 @@ theorem UInt16.max_def (x y : UInt16) : max x y = if x ≤ y then y else x := rf

theorem UInt16.min_def (x y : UInt16) : min x y = if x ≤ y then x else y := rfl

theorem UInt16.max_toNat (x y : UInt16) : (max x y).toNat = max x.toNat y.toNat := by
theorem UInt16.toNat_max (x y : UInt16) : (max x y).toNat = max x.toNat y.toNat := by
rw [max_def]
split
· next h =>
Expand All @@ -109,7 +109,7 @@ theorem UInt16.max_toNat (x y : UInt16) : (max x y).toNat = max x.toNat y.toNat
rw [le_iff_toNat_le_toNat] at h
rw [Nat.max_eq_left (Nat.le_of_not_ge h)]

theorem UInt16.min_toNat (x y : UInt16) : (min x y).toNat = min x.toNat y.toNat := by
theorem UInt16.toNat_min (x y : UInt16) : (min x y).toNat = min x.toNat y.toNat := by
rw [min_def]
split
· next h =>
Expand Down Expand Up @@ -156,7 +156,7 @@ theorem UInt32.max_def (x y : UInt32) : max x y = if x ≤ y then y else x := rf

theorem UInt32.min_def (x y : UInt32) : min x y = if x ≤ y then x else y := rfl

theorem UInt32.max_toNat (x y : UInt32) : (max x y).toNat = max x.toNat y.toNat := by
theorem UInt32.toNat_max (x y : UInt32) : (max x y).toNat = max x.toNat y.toNat := by
rw [max_def]
split
· next h =>
Expand All @@ -166,7 +166,7 @@ theorem UInt32.max_toNat (x y : UInt32) : (max x y).toNat = max x.toNat y.toNat
rw [le_iff_toNat_le_toNat] at h
rw [Nat.max_eq_left (Nat.le_of_not_ge h)]

theorem UInt32.min_toNat (x y : UInt32) : (min x y).toNat = min x.toNat y.toNat := by
theorem UInt32.toNat_min (x y : UInt32) : (min x y).toNat = min x.toNat y.toNat := by
rw [min_def]
split
· next h =>
Expand Down Expand Up @@ -213,7 +213,7 @@ theorem UInt64.max_def (x y : UInt64) : max x y = if x ≤ y then y else x := rf

theorem UInt64.min_def (x y : UInt64) : min x y = if x ≤ y then x else y := rfl

theorem UInt64.max_toNat (x y : UInt64) : (max x y).toNat = max x.toNat y.toNat := by
theorem UInt64.toNat_max (x y : UInt64) : (max x y).toNat = max x.toNat y.toNat := by
rw [max_def]
split
· next h =>
Expand All @@ -223,7 +223,7 @@ theorem UInt64.max_toNat (x y : UInt64) : (max x y).toNat = max x.toNat y.toNat
rw [le_iff_toNat_le_toNat] at h
rw [Nat.max_eq_left (Nat.le_of_not_ge h)]

theorem UInt64.min_toNat (x y : UInt64) : (min x y).toNat = min x.toNat y.toNat := by
theorem UInt64.toNat_min (x y : UInt64) : (min x y).toNat = min x.toNat y.toNat := by
rw [min_def]
split
· next h =>
Expand Down Expand Up @@ -284,7 +284,7 @@ theorem USize.max_def (x y : USize) : max x y = if x ≤ y then y else x := rfl

theorem USize.min_def (x y : USize) : min x y = if x ≤ y then x else y := rfl

theorem USize.max_toNat (x y : USize) : (max x y).toNat = max x.toNat y.toNat := by
theorem USize.toNat_max (x y : USize) : (max x y).toNat = max x.toNat y.toNat := by
rw [max_def]
split
· next h =>
Expand All @@ -294,7 +294,7 @@ theorem USize.max_toNat (x y : USize) : (max x y).toNat = max x.toNat y.toNat :=
rw [le_iff_toNat_le_toNat] at h
rw [Nat.max_eq_left (Nat.le_of_not_ge h)]

theorem USize.min_toNat (x y : USize) : (min x y).toNat = min x.toNat y.toNat := by
theorem USize.toNat_min (x y : USize) : (min x y).toNat = min x.toNat y.toNat := by
rw [min_def]
split
· next h =>
Expand Down

0 comments on commit 41fee2e

Please sign in to comment.