Skip to content

The hub of pre-trained models in the medical domain

License

Notifications You must be signed in to change notification settings

kyungjincho/MI2RLNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MI2RLNet

This MI2RLNet is the hub of pretrained models in the medical domain.

We hope MI2RLNet helps your downstream task.

  • Organizing Team : MI2RL, Asan Medical Center(AMC), Seoul, Republic of Korea

  • Contributor

    • Commiter : Kyuri Kim, Jiyeon Seo, Jooyoung Park, Mingyu Kim, Kyungjin Cho, Daeun Kim, Yujin Nam.

    • Reviewer : Sungman Cho, Sungchul Kim.

    • Data Maintainer : Miso Jang, Namkug Kim.


  • Docker images

    • Dockerfille : tensorflow > 2.x, Pytorch 1.x


Contents

Data description

Modality Part Module Data Reference
X-ray Chest L/R Mark Detection AMC
X-ray Chest PA / Lateral /Others Classification AMC
CT Chest Enhanced / Non-Enhanced Classification AMC
CT Chest Lung Segmentation AMC
CT Abdomen Kidnet & Tmuor Segmentation KiTS 2019
CT Abdomen Liver Segmentation AMC, LiTS 2017
Endoscopy Abdomen Polyp Detection Kvsair-SEG
MR Brain Brain Extraction AMC
MR Brain Blackblood Segmentation AMC

Experiment results

Modality Part Module Results Wiki Weights Framework
X-ray Chest L/R Mark Detection 0.99 (mAP) link link TF 2.x
X-ray Chest PA / Lateral / Others Classification 0.94 (Acc, external) link link TF 2.x
CT Chest Enhanced / Non-Enhanced Classification 0.96 (Acc, external) link link TF 2.x
CT Chest Lung Segmentation 0.98 (DSC) - link TF 2.x
CT Abdomen Kidney & Tumor Segmentation 0.83 (DSC) link link TF 2.x
CT Abdomen Liver Segmentation 0.97 (DSC) link link TF 2.x
Endoscopy Abdomen Polyp Detection 0.70 (DSC) link link Pytorch
MR Brain MRI/MRA BET (Brain Extration Tool) 0.95 (DSC) link MRI MRA Pytorch
MR Brain Blackblood Segmentation 0.83 (DSC) link link TF 2.x

How can we use ?

  • The example code below applies to almost all modules. Some modules may require additional parameters.

Inference

from medimodule.Abdomen import LiverSegmentation

# Initialize the model.
# If pre-trained weight exists, enter it together when the model is assigned.
model = LiverSegmentation("/path/of/weight")

# Get a result.
# If you want to save the result, enter it with `save_path` kwargs.
image, mask = model.predict("/path/of/image", save_path="/path/for/save")

Transfer Learning

# Import any module you want to fine-tune.
from medimodule.Abdomen import LiverSegmentation

# Initialize the model with pre-trained weight.
model = LiverSegmentation("/path/of/weight")

# Construct your custom training code.
...
model.train()
...

Contributing

If you'd like to contribute, or have any suggestions for these guidelines, you can contact us at [email protected] or open an issue on this GitHub repository.

All contributions welcome! All content in this repository is licensed under the Apache 2.0 license.

About

The hub of pre-trained models in the medical domain

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Dockerfile 0.1%