Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add dilated mask #20

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 26 additions & 3 deletions long_net/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,31 @@ def __init__(
self.proj_k = nn.Linear(dim, dim)
self.proj_v = nn.Linear(dim, dim)

def get_mask(self, i, j):
return torch.ones((i, j), device=self.device, dtype=torch.bool).triu(j - i + 2)
def get_mask(self, n, device):
if self.mask is not None and self.mask.shape[-1] >= n:
return self.mask[:n, :n]

if self.mask is None:
print('computing mask..')

mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
k = 0
segment_lengths = [4, 8, 16]
dilation_rates = [1, 2, 4]
# segment_lengths = [2048, 4096, 8192, 16384, 32768]
# dilation_rates = [1, 2, 4, 6, 12]
for i in range(len(mask)):
for j in range(len(mask[0])):
will_mask = True
for segment_length, dilation_rate in zip(segment_lengths, dilation_rates):
if np.floor(i/segment_length) == np.floor(j/segment_length) and i % dilation_rate == 0 and j % dilation_rate == 0:
will_mask = False
if will_mask:
mask[i][j] = True
k += 1
self.register_buffer("mask", mask, persistent=False)
self.mask = mask
return mask

def forward(self, x):
batch_size, seq_len, _ = x.shape
Expand Down Expand Up @@ -121,7 +144,7 @@ def forward(self, x):

# if causal create a mask and apply to the output
if self.causal:
mask = self.get_mask(attn_output.size(1), attn_output.size(1))
mask = self.get_mask(n=attn_output.size(1), device='cuda:0')

attn_output = attn_output.masked_fill(mask, float("-inf"))

Expand Down