-
Notifications
You must be signed in to change notification settings - Fork 31
/
merge_surnames.R
171 lines (153 loc) · 9.3 KB
/
merge_surnames.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#' Surname probability merging function.
#'
#' \code{merge_surnames} merges surnames in user-input dataset with corresponding
#' race/ethnicity probabilities from U.S. Census Surname List and Spanish Surname List.
#'
#' This function allows users to match surnames in their dataset with the U.S.
#' Census Surname List (from 2000 or 2010) and Spanish Surname List to obtain
#' Pr(Race | Surname) for each of the five major racial groups.
#'
#' By default, the function matches surnames to the Census list as follows:
#' 1) Search raw surnames in Census surname list;
#' 2) Remove any punctuation and search again;
#' 3) Remove any spaces and search again;
#' 4) Remove suffixes (e.g., Jr) and search again;
#' 5) Split double-barreled surnames into two parts and search first part of name;
#' 6) Split double-barreled surnames into two parts and search second part of name;
#' 7) For any remaining names, impute probabilities using distribution
#' for all names not appearing on Census list.
#'
#' Each step only applies to surnames not matched in a previous ste.
#' Steps 2 through 7 are not applied if \code{clean.surname} is FALSE.
#'
#' Note: Any name appearing only on the Spanish Surname List is assigned a
#' probability of 1 for Hispanics/Latinos and 0 for all other racial groups.
#'
#' @param voter.file An object of class \code{data.frame}. Must contain a field
#' named 'surname' containing list of surnames to be merged with Census lists.
#' @param surname.year An object of class \code{numeric} indicating which year
#' Census Surname List is from. Accepted values are \code{2010} and \code{2000}.
#' Default is \code{2020}.
#' @param name.data An object of class \code{data.frame}. Must contain a leading
#' column of surnames, and 5 subsequent columns, with Pr(Race | Surname) for each
#' of the five major racial categories.
#' @param clean.surname A \code{TRUE}/\code{FALSE} object. If \code{TRUE},
#' any surnames in \code{\var{voter.file}} that cannot initially be matched
#' to surname lists will be cleaned, according to U.S. Census specifications,
#' in order to increase the chance of finding a match. Default is \code{TRUE}.
#' @param impute.missing A \code{TRUE}/\code{FALSE} object. If \code{TRUE},
#' race/ethnicity probabilities will be imputed for unmatched names using
#' race/ethnicity distribution for all other names (i.e., not on Census List).
#' Default is \code{TRUE}.
#' @return Output will be an object of class \code{data.frame}. It will
#' consist of the original user-input data with additional columns that
#' specify the part of the name matched with Census data (\code{\var{surname.match}}),
#' and the probabilities Pr(Race | Surname) for each racial group
#' (\code{\var{p_whi}} for White, \code{\var{p_bla}} for Black,
#' \code{\var{p_his}} for Hispanic/Latino,
#' \code{\var{p_asi}} for Asian and Pacific Islander, and
#' \code{\var{p_oth}} for Other/Mixed).
#'#'
#' @examples
#' data(voters)
#' \dontrun{try(merge_surnames(voters))}
#'
#' @keywords internal
merge_surnames <- function(voter.file, surname.year = 2020, name.data, clean.surname = TRUE, impute.missing = TRUE) {
if ("surname" %in% names(voter.file) == FALSE) {
stop('Data does not contain surname field.')
}
## Census Surname List
if (surname.year == 2000) {
surnames2000$surname <- as.character(surnames2000$surname)
surnames <- surnames2000
} else if (surname.year == 2010) {
surnames2010$surname <- as.character(surnames2010$surname)
surnames <- surnames2010
} else {
surnames <- name.data
colnames(surnames) <- colnames(surnames2010)
surnames$surname <- as.character(surnames$surname)
}
p_eth <- c("p_whi", "p_bla", "p_his", "p_asi", "p_oth")
## Convert Surnames in Voter File to Upper Case
df <- voter.file
df$surname.match <- df$surname.upper <- toupper(as.character(df$surname))
## Merge Surnames with Census List (No Cleaning Yet)
df <- merge(df[names(df) %in% p_eth == FALSE], surnames[c("surname", p_eth)], by.x = "surname.match", by.y = "surname", all.x = TRUE)
if (nrow(df[df$surname.upper %in% surnames$surname == F, ]) == 0) {
return(df[, c(names(voter.file), "surname.match", p_eth)])
}
df[df$surname.upper %in% surnames$surname == F, ]$surname.match <- ""
df1 <- df[df$surname.upper %in% surnames$surname, ] #Matched surnames
df2 <- df[df$surname.upper %in% surnames$surname == F, ] #Unmatched surnames
## Clean Surnames (if Specified by User)
if (clean.surname) {
## Remove All Punctuation and Try Merge Again
df2$surname.match <- gsub("[^[:alnum:] ]", "", df2$surname.upper)
df2 <- merge(df2[names(df2) %in% p_eth == FALSE], surnames[c("surname", p_eth)], by.x = "surname.match", by.y = "surname", all.x = TRUE)
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {
df1 <- rbind(df1, df2[df2$surname.match %in% surnames$surname, ])
df2 <- df2[df2$surname.match %in% surnames$surname == F, ]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {df2$surname.match <- ""}
}
## Remove All Spaces and Try Merge Again
df2$surname.match <- gsub(" ", "", df2$surname.match)
df2 <- merge(df2[names(df2) %in% p_eth == FALSE], surnames[c("surname", p_eth)], by.x = "surname.match", by.y = "surname", all.x = TRUE)
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {
df1 <- rbind(df1, df2[df2$surname.match %in% surnames$surname, ])
df2 <- df2[df2$surname.match %in% surnames$surname == FALSE, ]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {df2$surname.match <- ""}
}
## Remove Jr/Sr/III Suffixes
suffix <- c("JUNIOR", "SENIOR", "THIRD", "III", "JR", " II", " J R", " S R", " IV")
for (i in 1:length(suffix)) {
df2$surname.match <- ifelse(substr(df2$surname.match, nchar(df2$surname.match) - (nchar(suffix)[i] - 1), nchar(df2$surname.match)) == suffix[i],
substr(df2$surname.match, 1, nchar(df2$surname.match) - nchar(suffix)[i]),
df2$surname.match)
}
df2$surname.match <- ifelse(nchar(df2$surname.match) >= 7,
ifelse(substr(df2$surname.match, nchar(df2$surname.match) - 1, nchar(df2$surname.match)) == "SR",
substr(df2$surname.match, 1, nchar(df2$surname.match) - 2),
df2$surname.match),
df2$surname.match) #Remove "SR" only if name has at least 7 characters
df2 <- merge(df2[names(df2) %in% p_eth == FALSE], surnames[c("surname", p_eth)], by.x = "surname.match", by.y = "surname", all.x = TRUE)
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {
df1 <- rbind(df1, df2[df2$surname.match %in% surnames$surname, ])
df2 <- df2[df2$surname.match %in% surnames$surname == FALSE, ]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {df2$surname.match <- ""}
}
## Names with Hyphens or Spaces, e.g. Double-Barreled Names
df2$surname2 <- df2$surname1 <- NA
df2$surname1[grep("-", df2$surname.upper)] <- sapply(strsplit(grep("-", df2$surname.upper, value = TRUE), "-"), "[", 1)
df2$surname2[grep("-", df2$surname.upper)] <- sapply(strsplit(grep("-", df2$surname.upper, value = TRUE), "-"), "[", 2)
df2$surname1[grep(" ", df2$surname.upper)] <- sapply(strsplit(grep(" ", df2$surname.upper, value = TRUE), " "), "[", 1)
df2$surname2[grep(" ", df2$surname.upper)] <- sapply(strsplit(grep(" ", df2$surname.upper, value = TRUE), " "), "[", 2)
## Use first half of name to merge in priors
df2$surname.match <- as.character(df2$surname1)
df2 <- merge(df2[names(df2) %in% c(p_eth) == F], surnames[c("surname", p_eth)], by.x = "surname.match", by.y = "surname", all.x = TRUE)[names(df2)]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {
df1 <- rbind(df1, df2[df2$surname.match %in% surnames$surname, names(df2) %in% names(df1)])
df2 <- df2[df2$surname.match %in% surnames$surname == F, ]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {df2$surname.match <- ""}
}
## Use second half of name to merge in priors for rest
df2$surname.match <- as.character(df2$surname2)
df2 <- merge(df2[names(df2) %in% c(p_eth, "surname1", "surname2") == F], surnames[c("surname", p_eth)], by.x = "surname.match", by.y = "surname", all.x = TRUE)[names(df2) %in% c("surname1", "surname2") == F]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {
df1 <- rbind(df1, df2[df2$surname.match %in% surnames$surname, names(df2) %in% names(df1)])
df2 <- df2[df2$surname.match %in% surnames$surname == F, ]
if (nrow(df2[df2$surname.match %in% surnames$surname, ]) > 0) {df2$surname.match <- ""}
}
}
## Impute priors for names not on Census lists
if (impute.missing) {
if (nrow(df2) > 0) {
df2$surname.match <- ""
df2$p_whi <- .6665; df2$p_bla <- .0853; df2$p_his <- .1367; df2$p_asi <- .0797; df2$p_oth <- .0318
message(paste("Probabilities were imputed for", nrow(df2), ifelse(nrow(df2) == 1, "surname", "surnames"), "that could not be matched to Census list."))
}
} else message(paste(nrow(df2), ifelse(nrow(df2) == 1, "surname was", "surnames were"), "not matched."))
df <- rbind(df1, df2)
return(df[, c(names(voter.file), "surname.match", p_eth)])
}