-
Notifications
You must be signed in to change notification settings - Fork 31
/
merge_names.R
344 lines (311 loc) · 16.3 KB
/
merge_names.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#' Surname probability merging function.
#'
#' \code{merge_names} merges names in a user-input dataset with corresponding
#' race/ethnicity probabilities derived from both the U.S. Census Surname List
#' and Spanish Surname List and voter files from states in the Southern U.S.
#'
#' This function allows users to match names in their dataset with database entries
#' estimating P(name | ethnicity) for each of the five major racial groups for each
#' name. The database probabilities are derived from both the U.S. Census Surname List
#' and Spanish Surname List and voter files from states in the Southern U.S.
#'
#' By default, the function matches names as follows:
#' 1) Search raw surnames in the database;
#' 2) Remove any punctuation and search again;
#' 3) Remove any spaces and search again;
#' 4) Remove suffixes (e.g., "Jr") and search again (last names only)
#' 5) Split double-barreled names into two parts and search first part of name;
#' 6) Split double-barreled names into two parts and search second part of name;
#'
#' Each step only applies to names not matched in a previous step.
#' Steps 2 through 6 are not applied if \code{clean.surname} is FALSE.
#'
#' Note: Any name appearing only on the Spanish Surname List is assigned a
#' probability of 1 for Hispanics/Latinos and 0 for all other racial groups.
#'
#' @param voter.file An object of class \code{data.frame}. Must contain a row for each individual being predicted,
#' as well as a field named \code{\var{last}} containing each individual's surname.
#' If first name is also being used for prediction, the file must also contain a field
#' named \code{\var{first}}. If middle name is also being used for prediction, the field
#' must also contain a field named \code{\var{middle}}.
#' @param namesToUse A character vector identifying which names to use for the prediction.
#' The default value is \code{"last"}, indicating that only the last name will be used.
#' Other options are \code{"last, first"}, indicating that both last and first names will be
#' used, and \code{"last, first, middle"}, indicating that last, first, and middle names will all
#' be used.
#' @param census.surname A \code{TRUE}/\code{FALSE} object. If \code{TRUE},
#' function will call \code{merge_surnames} to merge in Pr(Race | Surname)
#' from U.S. Census Surname List (2000, 2010, or 2020) and Spanish Surname List.
#' If \code{FALSE}, user must provide a \code{name.dictionary} (see below).
#' Default is \code{TRUE}.
#' @param table.surnames An object of class \code{data.frame} provided by the
#' users as an alternative surname dictionary. It will consist of a list of
#' U.S. surnames, along with the associated probabilities P(name | ethnicity)
#' for ethnicities: white, Black, Hispanic, Asian, and other. Default is \code{NULL}.
#' (\code{\var{last_name}} for U.S. surnames, \code{\var{p_whi_last}} for White,
#' \code{\var{p_bla_last}} for Black, \code{\var{p_his_last}} for Hispanic,
#' \code{\var{p_asi_last}} for Asian, \code{\var{p_oth_last}} for other).
#' @param table.first See \code{\var{table.surnames}}.
#' @param table.middle See \code{\var{table.surnames}}.
#' @param impute.missing See \code{predict_race}.
#' @param model See \code{predict_race}.
#' @param clean.names A \code{TRUE}/\code{FALSE} object. If \code{TRUE},
#' any surnames in \code{\var{voter.file}} that cannot initially be matched
#' to the database will be cleaned, according to U.S. Census specifications,
#' in order to increase the chance of finding a match. Default is \code{TRUE}.
#' @return Output will be an object of class \code{data.frame}. It will
#' consist of the original user-input data with additional columns that
#' specify the part of the name matched with Census data (\code{\var{surname.match}}),
#' and the probabilities Pr(Race | Surname) for each racial group
#' (\code{\var{p_whi}} for White, \code{\var{p_bla}} for Black,
#' \code{\var{p_his}} for Hispanic/Latino,
#' \code{\var{p_asi}} for Asian and Pacific Islander, and
#' \code{\var{p_oth}} for Other/Mixed).
#' @importFrom dplyr coalesce
#' @examples
#' data(voters)
#' \dontrun{try(merge_names(voters, namesToUse = "surname", census.surname = TRUE))}
#' @keywords internal
merge_names <- function(voter.file, namesToUse, census.surname, table.surnames = NULL, table.first = NULL, table.middle = NULL, clean.names = TRUE, impute.missing = FALSE, model = "BISG") {
# check the names
if (namesToUse == "surname") {
if (!("surname" %in% names(voter.file))) {
stop("Voter data frame needs to have a column named 'surname'.")
}
} else if (namesToUse == "surname, first") {
if (!("surname" %in% names(voter.file)) || !("first" %in% names(voter.file))) {
stop("Voter data frame needs to have a column named 'surname' and a column called 'first'.")
}
} else if (namesToUse == "surname, first, middle") {
if (!("surname" %in% names(voter.file)) || !("first" %in% names(voter.file)) ||
!("middle" %in% names(voter.file))) {
stop("Voter data frame needs to have a column named 'surname', a column called 'first', and a column called 'middle'.")
}
}
wru_data_preflight()
path <- ifelse(getOption("wru_data_wd", default = FALSE), getwd(), tempdir())
first_c <- readRDS(paste0(path, "/wru-data-first_c.rds"))
mid_c <- readRDS(paste0(path, "/wru-data-mid_c.rds"))
if(census.surname){
last_c <- readRDS(paste0(path, "/wru-data-census_last_c.rds"))
} else {
last_c <- readRDS(paste0(path, "/wru-data-last_c.rds"))
}
p_eth <- c("c_whi", "c_bla", "c_his", "c_asi", "c_oth")
if (is.null(table.surnames)) {
lastNameDict <- last_c
} else {
lastNameDict <- table.surnames
names(lastNameDict) <- names(last_c)
lastNameDict[is.na(lastNameDict)] <- 0
}
if (is.null(table.first)) {
firstNameDict <- first_c
} else {
firstNameDict <- table.first
firstNameDict[is.na(firstNameDict)] <- 0
names(firstNameDict) <- names(first_c)
}
if (is.null(table.middle)) {
middleNameDict <- mid_c
} else {
middleNameDict <- table.middle
middleNameDict[is.na(middleNameDict)] <- 0
names(middleNameDict) <- names(mid_c)
}
nameDict <- list(
"first" = firstNameDict,
"middle" = middleNameDict,
"last" = lastNameDict
)
## Convert names in voter file to upper case
df <- voter.file
df$lastname.match <- df$lastname.upper <- toupper(as.character(df$surname))
if (grepl("first", namesToUse)) {
df$firstname.match <- df$firstname.upper <- toupper(as.character(df$first))
}
if (grepl("middle", namesToUse)) {
df$middlename.match <- df$middlename.upper <- toupper(as.character(df$middle))
df$middlename.match[is.na(df$middlename.match)] <- ""
}
## Merge Surnames with Census List (No Cleaning Yet)
df <- merge(df, lastNameDict, by.x = "lastname.match", by.y = "last_name", all.x = TRUE, sort = FALSE)
if (grepl("first", namesToUse)) {
df <- merge(df, firstNameDict, by.x = "firstname.match", by.y = "first_name", all.x = TRUE, sort = FALSE)
}
if (grepl("middle", namesToUse)) {
df <- merge(df, middleNameDict, by.x = "middlename.match", by.y = "middle_name", all.x = TRUE, sort = FALSE)
}
if (namesToUse == "surname" && sum(!(df$lastname.upper %in% lastNameDict$last_name)) == 0) {
return(df[, c(names(voter.file), "lastname.match", paste0(p_eth, "_last"))])
}
if (namesToUse == "surname, first" && sum(!(df$lastname.match %in% lastNameDict$last_name)) == 0 &&
sum(!(df$firstname.upper %in% firstNameDict$first_name)) == 0) {
return(df[, c(names(voter.file), "lastname.match", "firstname.match", paste0(p_eth, "_last"), paste0(p_eth, "_first"))])
}
if (namesToUse == "surname, first, middle" && sum(!(df$lastname.match %in% lastNameDict$last_name)) == 0 &&
sum(!(df$firstname.upper %in% firstNameDict$first_name)) == 0 && sum(!(df$middlename.upper %in% middleNameDict$middle_name)) == 0) {
return(df[, c(names(voter.file), "lastname.match", "firstname.match", "middlename.match", paste0(p_eth, "_last"), paste0(p_eth, "_first"), paste0(p_eth, "_middle"))])
}
## Clean names (if specified by user)
if (clean.names) {
for (nameType in strsplit(namesToUse, ", ")[[1]]) {
if(nameType=="surname"){
nameType <- "last"
}
df1 <- df[!is.na(df[, paste("c_whi_", nameType, sep = "")]), ] # Matched names
df2 <- df[is.na(df[, paste("c_whi_", nameType, sep = "")]), ] # Unmatched names
## Remove All Punctuation and Try Merge Again
if (nrow(df2) > 0) {
df2[, paste(nameType, "name.match", sep = "")] <- gsub("[^[:alnum:] ]", "", df2[, paste(nameType, "name.upper", sep = "")])
df2 <- merge(df2[, !grepl(paste("_", nameType, sep = ""), names(df2))], nameDict[[nameType]],
all.x = TRUE,
by.x = paste(nameType, "name.match", sep = ""), by.y = paste(nameType, "name", sep = "_"),
sort = FALSE
)
df2 <- df2[, names(df1)] # reorder the columns
if (sum(!is.na(df2[, paste("c_whi_", nameType, sep = ""), ])) > 0) {
df1 <- rbind(df1, df2[!is.na(df2[, paste("c_whi_", nameType, sep = ""), ]), ])
df2 <- df2[is.na(df2[, paste("c_whi_", nameType, sep = "")]), ]
}
}
## Remove All Spaces and Try Merge Again
if (nrow(df2) > 0) {
df2[, paste(nameType, "name.match", sep = "")] <- gsub(" ", "", df2[, paste(nameType, "name.match", sep = "")])
df2 <- merge(df2[, !grepl(paste("_", nameType, sep = ""), names(df2))], nameDict[[nameType]],
all.x = TRUE,
by.x = paste(nameType, "name.match", sep = ""), by.y = paste(nameType, "name", sep = "_"),
sort = FALSE
)
df2 <- df2[, names(df1)] # reorder the columns
if (sum(!is.na(df2[, paste("c_whi_", nameType, sep = ""), ])) > 0) {
df1 <- rbind(df1, df2[!is.na(df2[, paste("c_whi_", nameType, sep = ""), ]), ])
df2 <- df2[is.na(df2[, paste("c_whi_", nameType, sep = "")]), ]
}
}
# Edits specific to common issues with last names
if (nameType == "last" & nrow(df2) > 0) {
## Remove Jr/Sr/III Suffixes for last names
suffix <- c("JUNIOR", "SENIOR", "THIRD", "III", "JR", " II", " J R", " S R", " IV")
for (i in 1:length(suffix)) {
df2$lastname.match <- ifelse(substr(df2$lastname.match, nchar(df2$lastname.match) - (nchar(suffix)[i] - 1), nchar(df2$lastname.match)) == suffix[i],
substr(df2$lastname.match, 1, nchar(df2$lastname.match) - nchar(suffix)[i]),
df2$lastname.match
)
}
df2$lastname.match <- ifelse(nchar(df2$lastname.match) >= 7,
ifelse(substr(df2$lastname.match, nchar(df2$lastname.match) - 1, nchar(df2$lastname.match)) == "SR",
substr(df2$lastname.match, 1, nchar(df2$lastname.match) - 2),
df2$lastname.match
),
df2$lastname.match
) # Remove "SR" only if name has at least 7 characters
df2 <- merge(
df2[, !grepl(paste("_", nameType, sep = ""), names(df2))],
lastNameDict, by.x = "lastname.match", by.y = "last_name",
all.x = TRUE, sort = FALSE)
df2 <- df2[, names(df1)] # reorder the columns
if (sum(!is.na(df2[, paste("c_whi_", nameType, sep = ""), ])) > 0) {
df1 <- rbind(df1, df2[!is.na(df2[, paste("c_whi_", nameType, sep = ""), ]), ])
df2 <- df2[is.na(df2[, paste("c_whi_", nameType, sep = "")]), ]
}
}
## Names with Hyphens or Spaces, e.g. Double-Barreled Names
if (nrow(df2) > 0) {
df2$name2 <- df2$name1 <- NA
df2$name1[grep("-", df2[, paste(nameType, "name.upper", sep = "")])] <- sapply(strsplit(grep("-", df2[, paste(nameType, "name.upper", sep = "")], value = T), "-"), "[", 1)
df2$name2[grep("-", df2[, paste(nameType, "name.upper", sep = "")])] <- sapply(strsplit(grep("-", df2[, paste(nameType, "name.upper", sep = "")], value = T), "-"), "[", 2)
df2$name1[grep(" ", df2[, paste(nameType, "name.upper", sep = "")])] <- sapply(strsplit(grep(" ", df2[, paste(nameType, "name.upper", sep = "")], value = T), " "), "[", 1)
df2$name2[grep(" ", df2[, paste(nameType, "name.upper", sep = "")])] <- sapply(strsplit(grep(" ", df2[, paste(nameType, "name.upper", sep = "")], value = T), " "), "[", 2)
## Use first half of name to merge in priors
df2[, paste(nameType, "name.match", sep = "")] <- as.character(df2$name1)
df2 <- merge(df2[, !grepl(paste("_", nameType, sep = ""), names(df2))], nameDict[[nameType]],
all.x = TRUE,
by.x = paste(nameType, "name.match", sep = ""), by.y = paste(nameType, "name", sep = "_"),
sort = FALSE
)
df2 <- df2[, c(names(df1), "name1", "name2")] # reorder the columns
if (sum(!is.na(df2[, paste("c_whi_", nameType, sep = ""), ])) > 0) {
df1 <- rbind(df1, df2[!is.na(df2[, paste("c_whi_", nameType, sep = "")]), !(names(df2) %in% c("name1", "name2"))])
df2 <- df2[is.na(df2[, paste("c_whi_", nameType, sep = "")]), ]
}
}
## Use second half of name to merge in priors for rest
if (nrow(df2) > 0) {
df2[, paste(nameType, "name.match", sep = "")] <- as.character(df2$name2)
df2 <- merge(df2[, !grepl(paste("_", nameType, sep = ""), names(df2))], nameDict[[nameType]],
all.x = TRUE,
by.x = paste(nameType, "name.match", sep = ""), by.y = paste(nameType, "name", sep = "_"),
sort = FALSE
)
df2 <- df2[, c(names(df1), "name1", "name2")] # reorder the columns
if (sum(!is.na(df2[, paste("c_whi_", nameType, sep = ""), ])) > 0) {
df1 <- rbind(df1, df2[!is.na(df2[, paste("c_whi_", nameType, sep = "")]), !(names(df2) %in% c("name1", "name2"))])
df2 <- df2[is.na(df2[, paste("c_whi_", nameType, sep = "")]), ]
}
}
if (nrow(df2) > 0) {
df <- rbind(df1, df2[, !(names(df2) %in% c("name1", "name2"))])
} else {
df <- df1
}
}
}
## For unmatched names, just fill with an column mean if impute is true, or with constant if false
c_miss_last <- mean(is.na(df$c_whi_last))
if (c_miss_last > 0) {
message(paste(paste(sum(is.na(df$c_whi_last)), " (", round(100 * mean(is.na(df$c_whi_last)), 1), "%) individuals' last names were not matched.", sep = "")))
}
if (grepl("first", namesToUse)) {
c_miss_first <- mean(is.na(df$c_whi_first))
if (c_miss_first > 0) {
message(paste(paste(sum(is.na(df$c_whi_first)), " (", round(100 * mean(is.na(df$c_whi_first)), 1), "%) individuals' first names were not matched.", sep = "")))
}
}
if (grepl("middle", namesToUse)) {
c_miss_mid <- mean(is.na(df$c_whi_middle))
if (c_miss_mid > 0) {
message(paste(paste(sum(is.na(df$c_whi_middle)), " (", round(100 * mean(is.na(df$c_whi_middle)), 1), "%) individuals' middle names were not matched.", sep = "")))
}
}
if (impute.missing) {
impute.vec <- colMeans(df[, grep("c_", names(df), value = TRUE)], na.rm = TRUE)
for (i in grep("c_", names(df), value = TRUE)) {
df[, i] <- dplyr::coalesce(df[, i], impute.vec[i])
}
} else {
for (i in grep("c_", names(df), value = TRUE)) {
df[, i] <- dplyr::coalesce(df[, i], 1)
}
}
# return the data
if (namesToUse == "surname") {
return(df[, c(names(voter.file), "lastname.match", paste(p_eth, "last", sep = "_"))])
} else if (namesToUse == "surname, first") {
return(df[, c(
names(voter.file), "lastname.match", "firstname.match",
paste(p_eth, "last", sep = "_"), paste(p_eth, "first", sep = "_")
)])
} else if (namesToUse == "surname, first, middle") {
return(df[, c(
names(voter.file), "lastname.match", "firstname.match", "middlename.match",
paste(p_eth, "last", sep = "_"), paste(p_eth, "first", sep = "_"), paste(p_eth, "middle", sep = "_")
)])
}
}
#' Preflight for name data
#'
#' Checks if namedata is available in the current working directory, if not
#' downloads it from github using piggyback. By default, wru will download the
#' data to a temporary directory that lasts as long as your session does.
#' However, you may wish to set the \code{wru_data_wd} option to save the
#' downloaded data to your current working directory for more permanence.
#'
#' @importFrom piggyback pb_download
wru_data_preflight <- function() {
dest <- ifelse(getOption("wru_data_wd", default = FALSE), getwd(), tempdir())
tryCatch(
piggyback::pb_download(repo = "kosukeimai/wru", dest = dest),
error = function(e) message("There was an error retrieving data", e$message)
)
}