Skip to content

Commit

Permalink
fix: huber_schedule exponential not working on sd3_train.py
Browse files Browse the repository at this point in the history
  • Loading branch information
kohya-ss committed Dec 1, 2024
1 parent a5a27fe commit 14f642f
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 6 deletions.
2 changes: 1 addition & 1 deletion library/train_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -5875,7 +5875,7 @@ def get_huber_threshold(args, timesteps: torch.Tensor, noise_scheduler) -> torch
alpha = -math.log(args.huber_c) / noise_scheduler.config.num_train_timesteps
result = torch.exp(-alpha * timesteps) * args.huber_scale
elif args.huber_schedule == "snr":
if noise_scheduler is None or not hasattr(noise_scheduler, "alphas_cumprod"):
if not hasattr(noise_scheduler, "alphas_cumprod"):
raise NotImplementedError("Huber schedule 'snr' is not supported with the current model.")
alphas_cumprod = torch.index_select(noise_scheduler.alphas_cumprod, 0, timesteps.cpu())
sigmas = ((1.0 - alphas_cumprod) / alphas_cumprod) ** 0.5
Expand Down
8 changes: 3 additions & 5 deletions sd3_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -675,8 +675,8 @@ def grad_hook(parameter: torch.Tensor):
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0

# noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3.0)
# noise_scheduler_copy = copy.deepcopy(noise_scheduler)
# only used to get timesteps, etc. TODO manage timesteps etc. separately
dummy_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=3.0)

if accelerator.is_main_process:
init_kwargs = {}
Expand Down Expand Up @@ -844,9 +844,7 @@ def grad_hook(parameter: torch.Tensor):
# 1,
# )
# calculate loss
loss = train_util.conditional_loss(
args, model_pred.float(), target.float(), timesteps, "none", None
)
loss = train_util.conditional_loss(args, model_pred.float(), target.float(), timesteps, "none", dummy_scheduler)
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
loss = apply_masked_loss(loss, batch)
loss = loss.mean([1, 2, 3])
Expand Down

0 comments on commit 14f642f

Please sign in to comment.