Skip to content

kaskr/tmbstan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Package tmbstan

Build Status

MCMC sampling from TMB (Template Model Builder) model object using Stan. See

Monnahan CC, Kristensen K (2018) No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages. PLoS ONE 13(5): e0197954. https://doi.org/10.1371/journal.pone.0197954

Requirements

TMB version >= 1.7.12 (on CRAN). Models must be re-compiled using this new version.

Install

devtools::install_github("kaskr/tmbstan/tmbstan")

Examples

library(tmbstan)
runExample("simple")

## Run a single chain in serial with defaults
fit <- tmbstan(obj, chains=1)

## Run in parallel with a init function
cores <- parallel::detectCores()-1
options(mc.cores = cores)
init.fn <- function()
  list(u=rnorm(114), beta=rnorm(2), logsdu=runif(1,0,10), logsd0=runif(1,0,1))
fit <- tmbstan(obj, chains=cores, open_progress=FALSE, init=init.fn)

## To explore the fit use shinystan
library(shinystan)
launch_shinystan(fit)

## Can also get ESS and Rhat from rstan::monitor
mon <- monitor(fit)
max(mon$Rhat)
min(mon$Tail_ESS)

## Other methods provided by 'rstan'
class(fit)
methods(class="stanfit")
## Pairs plot of the fixed effects
pairs(fit, pars=names(obj$par))
## Trace plot
traceplot(fit, pars=names(obj$par), inc_warmup=TRUE)

## Can extract marginal posteriors easily
post <- as.matrix(fit)
hist(post[,'u[1]'])                     # random effect
hist(post[,'logsd0'])                   # fixed effect

## What if you want a posterior for derived quantities in the report? Just
## loop through each posterior sample (row) and call the report function
## which returns a list. The last column is the log-posterior density (lp__)
## and needs to be dropped
obj$report(post[1,-ncol(post)])         # sd0 is only element
sd0 <- rep(NA, len=nrow(post))
for(i in 1:nrow(post)){
  r <- obj$report(post[i,-ncol(post)])
  sd0[i] <- r$sd0
}
hist(sd0)

## It is also possible to use the Laplace approximation to integrate the
## random effects while using NUTS to integrate the fixed effects.
## ****This is generally not recommended****
init.fn <- function()
  list(beta=rnorm(2), logsdu=runif(1,0,10), logsd0=runif(1,0,1))
fit <- tmbstan(obj, chains=cores, open_progress=FALSE,
               init=init.fn, laplace=TRUE)

## There are no posterior samples for the random effects because they are
## integrated out by the LA. See Monnahan and Kristensen (2019) for discussion
## of why this would be worth doing. Typically it will be slower and less
## accurate than laplace=FALSE (the default).
names(as.data.frame(fit))

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •