forked from huggingface/diffusers
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Refactor] FreeInit for AnimateDiff based pipelines (huggingface#6874)
* update * update * update * update * update * update * update * update * update * update
- Loading branch information
Showing
7 changed files
with
398 additions
and
595 deletions.
There are no files selected for viewing
376 changes: 64 additions & 312 deletions
376
src/diffusers/pipelines/animatediff/pipeline_animatediff.py
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# Copyright 2024 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
from typing import Tuple, Union | ||
|
||
import torch | ||
import torch.fft as fft | ||
|
||
from ..utils.torch_utils import randn_tensor | ||
|
||
|
||
class FreeInitMixin: | ||
r"""Mixin class for FreeInit.""" | ||
|
||
def enable_free_init( | ||
self, | ||
num_iters: int = 3, | ||
use_fast_sampling: bool = False, | ||
method: str = "butterworth", | ||
order: int = 4, | ||
spatial_stop_frequency: float = 0.25, | ||
temporal_stop_frequency: float = 0.25, | ||
): | ||
"""Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537. | ||
This implementation has been adapted from the [official repository](https://github.com/TianxingWu/FreeInit). | ||
Args: | ||
num_iters (`int`, *optional*, defaults to `3`): | ||
Number of FreeInit noise re-initialization iterations. | ||
use_fast_sampling (`bool`, *optional*, defaults to `False`): | ||
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables | ||
the "Coarse-to-Fine Sampling" strategy, as mentioned in the paper, if set to `True`. | ||
method (`str`, *optional*, defaults to `butterworth`): | ||
Must be one of `butterworth`, `ideal` or `gaussian` to use as the filtering method for the | ||
FreeInit low pass filter. | ||
order (`int`, *optional*, defaults to `4`): | ||
Order of the filter used in `butterworth` method. Larger values lead to `ideal` method behaviour | ||
whereas lower values lead to `gaussian` method behaviour. | ||
spatial_stop_frequency (`float`, *optional*, defaults to `0.25`): | ||
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as `d_s` in | ||
the original implementation. | ||
temporal_stop_frequency (`float`, *optional*, defaults to `0.25`): | ||
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as `d_t` in | ||
the original implementation. | ||
""" | ||
self._free_init_num_iters = num_iters | ||
self._free_init_use_fast_sampling = use_fast_sampling | ||
self._free_init_method = method | ||
self._free_init_order = order | ||
self._free_init_spatial_stop_frequency = spatial_stop_frequency | ||
self._free_init_temporal_stop_frequency = temporal_stop_frequency | ||
|
||
def disable_free_init(self): | ||
"""Disables the FreeInit mechanism if enabled.""" | ||
self._free_init_num_iters = None | ||
|
||
@property | ||
def free_init_enabled(self): | ||
return hasattr(self, "_free_init_num_iters") and self._free_init_num_iters is not None | ||
|
||
def _get_free_init_freq_filter( | ||
self, | ||
shape: Tuple[int, ...], | ||
device: Union[str, torch.dtype], | ||
filter_type: str, | ||
order: float, | ||
spatial_stop_frequency: float, | ||
temporal_stop_frequency: float, | ||
) -> torch.Tensor: | ||
r"""Returns the FreeInit filter based on filter type and other input conditions.""" | ||
|
||
time, height, width = shape[-3], shape[-2], shape[-1] | ||
mask = torch.zeros(shape) | ||
|
||
if spatial_stop_frequency == 0 or temporal_stop_frequency == 0: | ||
return mask | ||
|
||
if filter_type == "butterworth": | ||
|
||
def retrieve_mask(x): | ||
return 1 / (1 + (x / spatial_stop_frequency**2) ** order) | ||
elif filter_type == "gaussian": | ||
|
||
def retrieve_mask(x): | ||
return math.exp(-1 / (2 * spatial_stop_frequency**2) * x) | ||
elif filter_type == "ideal": | ||
|
||
def retrieve_mask(x): | ||
return 1 if x <= spatial_stop_frequency * 2 else 0 | ||
else: | ||
raise NotImplementedError("`filter_type` must be one of gaussian, butterworth or ideal") | ||
|
||
for t in range(time): | ||
for h in range(height): | ||
for w in range(width): | ||
d_square = ( | ||
((spatial_stop_frequency / temporal_stop_frequency) * (2 * t / time - 1)) ** 2 | ||
+ (2 * h / height - 1) ** 2 | ||
+ (2 * w / width - 1) ** 2 | ||
) | ||
mask[..., t, h, w] = retrieve_mask(d_square) | ||
|
||
return mask.to(device) | ||
|
||
def _apply_freq_filter(self, x: torch.Tensor, noise: torch.Tensor, low_pass_filter: torch.Tensor) -> torch.Tensor: | ||
r"""Noise reinitialization.""" | ||
# FFT | ||
x_freq = fft.fftn(x, dim=(-3, -2, -1)) | ||
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) | ||
noise_freq = fft.fftn(noise, dim=(-3, -2, -1)) | ||
noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1)) | ||
|
||
# frequency mix | ||
high_pass_filter = 1 - low_pass_filter | ||
x_freq_low = x_freq * low_pass_filter | ||
noise_freq_high = noise_freq * high_pass_filter | ||
x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain | ||
|
||
# IFFT | ||
x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1)) | ||
x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real | ||
|
||
return x_mixed | ||
|
||
def _apply_free_init( | ||
self, | ||
latents: torch.Tensor, | ||
free_init_iteration: int, | ||
num_inference_steps: int, | ||
device: torch.device, | ||
dtype: torch.dtype, | ||
generator: torch.Generator, | ||
): | ||
if free_init_iteration == 0: | ||
self._free_init_initial_noise = latents.detach().clone() | ||
return latents, self.scheduler.timesteps | ||
|
||
latent_shape = latents.shape | ||
|
||
free_init_filter_shape = (1, *latent_shape[1:]) | ||
free_init_freq_filter = self._get_free_init_freq_filter( | ||
shape=free_init_filter_shape, | ||
device=device, | ||
filter_type=self._free_init_method, | ||
order=self._free_init_order, | ||
spatial_stop_frequency=self._free_init_spatial_stop_frequency, | ||
temporal_stop_frequency=self._free_init_temporal_stop_frequency, | ||
) | ||
|
||
current_diffuse_timestep = self.scheduler.config.num_train_timesteps - 1 | ||
diffuse_timesteps = torch.full((latent_shape[0],), current_diffuse_timestep).long() | ||
|
||
z_t = self.scheduler.add_noise( | ||
original_samples=latents, noise=self._free_init_initial_noise, timesteps=diffuse_timesteps.to(device) | ||
).to(dtype=torch.float32) | ||
|
||
z_rand = randn_tensor( | ||
shape=latent_shape, | ||
generator=generator, | ||
device=device, | ||
dtype=torch.float32, | ||
) | ||
latents = self._apply_freq_filter(z_t, z_rand, low_pass_filter=free_init_freq_filter) | ||
latents = latents.to(dtype) | ||
|
||
# Coarse-to-Fine Sampling for faster inference (can lead to lower quality) | ||
if self._free_init_use_fast_sampling: | ||
num_inference_steps = int(num_inference_steps / self._free_init_num_iters * (free_init_iteration + 1)) | ||
self.scheduler.set_timesteps(num_inference_steps, device=device) | ||
|
||
return latents, self.scheduler.timesteps |
Oops, something went wrong.