model.fit(inputs,target) OR model.fit(inputs.values,target)
model.predict(test_inputs) OR model.predict(test_inputs.values)
model.score(test_inputs,test_target)
model.predict_proba(test_inputs)
model.get_params(deep=True)
sklearn.preprocessing.MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(df[['Age']])
df.Age = scaler.transform(df[['Age']])
dataset.columns[dataset.isna().any()]
dataset.isna().sum()
dataset['Column_name'].isna().sum()
import pandas as pd
dataset = pd.read_csv('data.csv')
from sklearn.datasets import load_iris
dataset = load_iris()
Use GridSearch
sklearn.model_selection.GridSearchCV
https://github.com/karenpinto1602/ML_Models/blob/main/Hyperparameter%20Tuning/Excercise/digitsHyperParameter.ipynb
https://github.com/karenpinto1602/ML_Models/blob/main/Regularization