-
Notifications
You must be signed in to change notification settings - Fork 508
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8455057
commit 534d40c
Showing
2 changed files
with
170 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" | ||
This script converts vits models trained using the LJ Speech dataset. | ||
Usage: | ||
(1) Download vits | ||
cd /Users/fangjun/open-source | ||
git clone https://github.com/jaywalnut310/vits | ||
(2) Download pre-trained models from | ||
https://huggingface.co/csukuangfj/vits-ljs/tree/main | ||
wget https://huggingface.co/csukuangfj/vits-ljs/resolve/main/pretrained_ljs.pth | ||
(3) Run this file | ||
./export-onnx-ljs.py \ | ||
--config ~/open-source//vits/configs/ljs_base.json \ | ||
--checkpoint ~/open-source/icefall-models/vits-ljs/pretrained_ljs.pth | ||
It will generate the following two files: | ||
$ ls -lh *.onnx | ||
-rw-r--r-- 1 fangjun staff 36M Oct 10 20:48 vits-ljs.int8.onnx | ||
-rw-r--r-- 1 fangjun staff 109M Oct 10 20:48 vits-ljs.onnx | ||
""" | ||
import sys | ||
|
||
# Please change this line to point to the vits directory. | ||
# You can download vits from | ||
# https://github.com/jaywalnut310/vits | ||
sys.path.insert(0, "/Users/fangjun/open-source/vits") | ||
|
||
import argparse | ||
from pathlib import Path | ||
|
||
import commons | ||
import torch | ||
import utils | ||
from models import SynthesizerTrn | ||
from onnxruntime.quantization import QuantType, quantize_dynamic | ||
from text import text_to_sequence | ||
from text.symbols import symbols | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--config", | ||
type=str, | ||
required=True, | ||
help="""Path to ljs_base.json. | ||
You can find it at | ||
https://huggingface.co/csukuangfj/vits-ljs/resolve/main/ljs_base.json | ||
""", | ||
) | ||
|
||
parser.add_argument( | ||
"--checkpoint", | ||
type=str, | ||
required=True, | ||
help="""Path to the checkpoint file. | ||
You can find it at | ||
https://huggingface.co/csukuangfj/vits-ljs/resolve/main/pretrained_ljs.pth | ||
""", | ||
) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
class OnnxModel(torch.nn.Module): | ||
def __init__(self, model: SynthesizerTrn): | ||
super().__init__() | ||
self.model = model | ||
|
||
def forward( | ||
self, | ||
x, | ||
x_lengths, | ||
noise_scale=1, | ||
length_scale=1, | ||
noise_scale_w=1.0, | ||
sid=None, | ||
max_len=None, | ||
): | ||
return self.model.infer( | ||
x=x, | ||
x_lengths=x_lengths, | ||
sid=sid, | ||
noise_scale=noise_scale, | ||
length_scale=length_scale, | ||
noise_scale_w=noise_scale_w, | ||
max_len=max_len, | ||
)[0] | ||
|
||
|
||
def get_text(text, hps): | ||
text_norm = text_to_sequence(text, hps.data.text_cleaners) | ||
if hps.data.add_blank: | ||
text_norm = commons.intersperse(text_norm, 0) | ||
text_norm = torch.LongTensor(text_norm) | ||
return text_norm | ||
|
||
|
||
def check_args(args): | ||
assert Path(args.config).is_file(), args.config | ||
assert Path(args.checkpoint).is_file(), args.checkpoint | ||
|
||
|
||
@torch.no_grad() | ||
def main(): | ||
args = get_args() | ||
hps = utils.get_hparams_from_file(args.config) | ||
|
||
net_g = SynthesizerTrn( | ||
len(symbols), | ||
hps.data.filter_length // 2 + 1, | ||
hps.train.segment_size // hps.data.hop_length, | ||
**hps.model, | ||
) | ||
_ = net_g.eval() | ||
|
||
_ = utils.load_checkpoint(args.checkpoint, net_g, None) | ||
|
||
x = get_text("Liliana is the most beautiful assistant", hps) | ||
x = x.unsqueeze(0) | ||
|
||
x_length = torch.tensor([x.shape[1]], dtype=torch.int64) | ||
noise_scale = torch.tensor([1], dtype=torch.float32) | ||
length_scale = torch.tensor([1], dtype=torch.float32) | ||
noise_scale_w = torch.tensor([1], dtype=torch.float32) | ||
|
||
model = OnnxModel(net_g) | ||
|
||
opset_version = 13 | ||
|
||
filename = "vits-ljs.onnx" | ||
|
||
torch.onnx.export( | ||
model, | ||
(x, x_length, noise_scale, length_scale, noise_scale_w), | ||
filename, | ||
opset_version=opset_version, | ||
input_names=["x", "x_length", "noise_scale", "length_scale", "noise_scale_w"], | ||
output_names=["y"], | ||
dynamic_axes={ | ||
"x": {0: "N", 1: "L"}, # n_audio is also known as batch_size | ||
"x_length": {0: "N"}, | ||
"y": {0: "N", 2: "L"}, | ||
}, | ||
) | ||
|
||
print("Generate int8 quantization models") | ||
|
||
filename_int8 = "vits-ljs.int8.onnx" | ||
quantize_dynamic( | ||
model_input=filename, | ||
model_output=filename_int8, | ||
weight_type=QuantType.QUInt8, | ||
) | ||
|
||
print(f"Saved to {filename} and {filename_int8}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |