This is the PyTorch implementation for our WWW 2023 paper.
Jiawei Chen, Junkang Wu, Jiancan Wu, Sheng Zhou, Xuezhi Cao, Xiangnan He. 2023. Adap-$\tau$: Adaptively Modulating Embedding Magnitude for Recommendation arxiv link
- pytorch==1.11.0
- numpy==1.21.5
- scipy==1.7.3
- torch-scatter==2.0.9
- mkdir log
- cd bash
# Adap_tau_0
bash Adap_tau_novel.sh yelp2018 1e-4 1e-3 3 1024 2048 drop 1.0 1.0 uniform_gpu 0 100 cosine mf weight_v0
# Adap_tau
bash Adap_tau_novel.sh yelp2018 1e-4 1e-3 3 1024 2048 drop 1.0 1.0 uniform_gpu 0 100 cosine mf weight_mean
# Adap_tau_0
bash Adap_tau_novel.sh amazon-book 1e-3 1e-7 3 1024 2048 nopdrop 1.0 1.0 uniform_gpu 0 100 cosine mf weight_v0
# Adap_tau
bash Adap_tau_novel.sh amazon-book 1e-3 1e-7 3 1024 2048 nopdrop 1.0 1.0 uniform_gpu 0 100 cosine mf weight_mean
# Adap_tau_0
bash Adap_tau_novel.sh gowalla 1e-4 1e-9 3 1024 2048 drop 0.9 0.25 uniform_gpu 0 100 cosine mf weight_v0
# Adap_tau
bash Adap_tau_novel.sh gowalla 1e-4 1e-9 3 1024 2048 drop 0.9 0.25 uniform_gpu 0 100 cosine mf weight_ratio
# Adap_tau_0
bash Adap_tau_novel.sh yelp2018 1e-3 1e-1 3 1024 2048 drop 1.0 1.0 no_sample 0 100 nocosine lgn weight_v0
# Adap_tau
bash Adap_tau_novel.sh yelp2018 1e-3 1e-1 3 1024 2048 drop 1.0 1.5 no_sample 0 100 nocosine lgn weight_mean
# Adap_tau_0
bash Adap_tau_novel.sh amazon-book 1e-4 1e-1 3 1024 2048 nopdrop 1.0 1.0 no_sample 0 100 nocosine lgn weight_v0
# Adap_tau
bash Adap_tau_novel.sh amazon-book 1e-4 1e-1 3 1024 2048 nopdrop 1.0 1.0 no_sample 0 100 nocosine lgn weight_mean
# Adap_tau_0
bash Adap_tau_novel.sh gowalla 1e-3 1e-5 3 1024 2048 nopdrop 0.8 0.6 no_sample 0 100 nocosine lgn weight_v0
# Adap_tau
bash Adap_tau_novel.sh gowalla 1e-3 1e-5 3 1024 2048 nopdrop 0.8 0.6 no_sample 0 100 nocosine lgn weight_mean
The training log is also provided. The results fluctuate slightly under different running environment.
For any clarification, comments, or suggestions please create an issue or contact me ([email protected]).