-
Notifications
You must be signed in to change notification settings - Fork 5
A hand pose estimation system using dual-KD-trees
License
jsupancic/AStar_Dual_Tree_HandPose
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# AStar_Dual_Tree_HandPose A fast NN hand-pose estimation system using dual-KD-trees. Also includes implementations for various-SVM (inc. part models) and tree based methods. Please direct questions to [email protected] Requirements (1) OpenCV >= 3.0 (2) A C++11 compatible compiler (3) Boost (4) OpenNI 2.2 is needed to train/test with .oni files (5) GLUT, OpenGL and LibHand are required to synthesize training data (this requirement can be disabled by editing local.cmake) (6) OpenSSL, required for computing hashes for cache IDs. Compile w/ (1) cmake . (2) make -jX Run as ./deformable_depth eval_model CFG=myconfig_file.cfg # Configuration file options: HEAP_PROF=FALSE # profile where the memory is being used... JOINT_C=10 # for using SVMs NUM_CPUS=20 # how many CPUs to use? MAX_TRAIN_MINS=150 # cut off training at this point. OBJ_DEPTH=20 # how deep is the bounding box SKIN_FILTER=TRUE # use a high recall skin detection pre-processor MANIFOLD_FN=ApxMin # which depths to consider? NEG_SET=BIG # how many negatives to use when training? TEST_VIDEO=TRUE # test on the video sequences? # Cheat options for debugging CHEAT_DEPTH=FALSE # give ground truth depth CHEAT_HAND_BB=FALSE # give ground truth bounding box # .985 is the highest we can go... CHEAT_HAND_BB_THRESH=.8 CHEAT_HAND_ORI=FALSE # give ground truth orientation #CHEAT_HAND_LR=RIGHT CHEAT_ONLY_FREESPACE=FALSE # DONT_USE_ARM=TRUE OUT_DIR=out/ #OUT_DIR=automatic # ApxNN, KinectPose, AONN, DeepYi, FLANN, NYUModel, Human, VolNN, Export, etc. # Keskin MODEL=ApxNN # use fast NN WRITE_MODEL=FALSE # SAVED_MODEL=/home/jsupanci/Dropbox/out/2014.09.01-ICL-NN25k20-SavedTree/model.yml #SORT_NODES= SORT_TO_DEPTH=1 ORTHOGRAPHIC=FALSE # tends to introduce artifacts which hurts performance. # for training decision trees TREE_SPLIT_SIZE=50 ENTROPY_TYPE=shannon # Configure FLANN FLANN_SAMPLES=50 FLANN_LSH_TABLE_NUMBER=15 FLANN_LSH_KEY_SIZE=15 FLANN_LSH_MULTI_PROBE_LEVEL=2 # configure the dataset #DATASET=NYU #DATASET=synth DATASET=ICL #DATASET=DIRECTORIES #DATASET=EGOCENTRIC_SYNTH #DATASET=test_videos #DIRECTORIES=/home/grogez/Egocentric_Synth_Poser/ #DATASET=NYU ICL_BASE=/home/jsupanci/workspace/data/ICL_HANDS2/ #ICL_BASE=/extra/titansc0/jsupanci/data/ICL_HANDS2/ #SYNTHETIC_DIRECTORY=/mnt/data/jsupanci/Synth-75000-WristVariation/ #SYNTHETIC_DIRECTORY=/home/jsupanci/data/synth-yi/ SYNTHETIC_DIRECTORY=/mnt/big/shared_data/Synth-75000-WristVariation/ #SYNTHETIC_DIRECTORY=/extra/titansc0/jsupanci/data/Synth-75000-WristVariation/ LEVEL_DB=/scratch/jsupanci/leveldb/ #LEVEL_DB=data/annotation-database #DATASET=test_videos #SYNTHETIC_DIRECTORY=./data/oracle_synth_armless_depth/ # setup the 500 exemplar model # 3000 / 500 # 15000 / 5000 #NPOS=15000 #NPOS=25000 NPOS=2500 NNEG=0 #SYNTHETIC_DIRECTORY=data/2014.05.14-Synth50 #SYNTHETIC_DIRECTORY=/mnt/big/shared_data/Synth-75000-WristVariation/ #SYNTHETIC_DIRECTORY=/mnt/big/shared_data/Synth-75000-WristVariation/ IMPLICIT_IN_PLANE_ROTATION=TRUE DATA_SOURCE_PRE_ROTATE=TRUE TRAINING_INSERT_LR_FLIPS=FALSE # kmeans, pyramid ASTAR_ADD_BOUNDING=FALSE ASTAR_CLUSTERING_ALG=kmeans DEBUG_ASTAR_VIDEO=FALSE NN_XTEMPL_CACHE_SIZE=50000 # no pruning with 5000000, 500000 NN_SMA_OPENED_LIMIT=50000 NN_ADMISSIBILITY=1 NN_PYRAMID_SHARPNESS=.5 SEGMENTATION=FALSE NN_LOG_TREE=FALSE # Analysis Section - universal parameters POST_POSE_CONVEXITY=FALSE POST_POSE_VORONOI=TRUE # this one helps INTERPOLATE_TRACK=FALSE # tries to make tracker evaluation more fair. INTERPOLATE_PARTS_IK=FALSE # factor by 2.5 to 4. FINGER_DIST_THRESH=4 SCORE_SKIP_LEFT=FALSE # Right dominstates in egocenric SCORE_SKIP_RIGHT=FALSE # Synthesis parameters SYNTH_CLUSTERS=5 SYNTH_EX_PER_CLUSTER=25000 SYNTH_PERTURB_R_MIN=20 SYNTH_PERTURB_R_MAX=120 SYNTH_FINGER_AREA_FILTER=FALSE
About
A hand pose estimation system using dual-KD-trees
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published