Skip to content

Commit

Permalink
Merge pull request #220 from jrzaurin/save_opt
Browse files Browse the repository at this point in the history
Option to save Optimizer in the `save` method
  • Loading branch information
jrzaurin authored Jul 23, 2024
2 parents 8057360 + 9d73a88 commit deb4f2e
Show file tree
Hide file tree
Showing 12 changed files with 541 additions and 179 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ jobs:
strategy:
fail-fast: true
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.6.1
1.6.2
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import os
import sys
import json
import warnings
from abc import ABC, abstractmethod
from pathlib import Path

import numpy as np
import torch
Expand Down Expand Up @@ -31,6 +33,11 @@
from pytorch_widedeep.preprocessing.tab_preprocessor import TabPreprocessor


# There is quite a lot of code repetition between the
# BaseContrastiveDenoisingTrainer and the BaseEncoderDecoderTrainer. Given
# how differently they are instantiated I am happy to tolerate this
# repetition. However, if the code base grows, it might be worth refactoring
# this code
class BaseContrastiveDenoisingTrainer(ABC):
def __init__(
self,
Expand Down Expand Up @@ -96,45 +103,82 @@ def pretrain(
):
raise NotImplementedError("Trainer.pretrain method not implemented")

@abstractmethod
def save(
self,
path: str,
save_state_dict: bool,
save_optimizer: bool,
model_filename: str,
):
raise NotImplementedError("Trainer.save method not implemented")
r"""Saves the model, training and evaluation history (if any) to disk
def _set_loss_fn(self, **kwargs):
if self.loss_type in ["contrastive", "both"]:
temperature = kwargs.get("temperature", 0.1)
reduction = kwargs.get("reduction", "mean")
self.contrastive_loss = InfoNCELoss(temperature, reduction)
Parameters
----------
path: str
path to the directory where the model and the feature importance
attribute will be saved.
save_state_dict: bool, default = False
Boolean indicating whether to save directly the model or the
model's state dictionary
save_optimizer: bool, default = False
Boolean indicating whether to save the optimizer or not
model_filename: str, Optional, default = "ed_model.pt"
filename where the model weights will be store
"""

if self.loss_type in ["denoising", "both"]:
lambda_cat = kwargs.get("lambda_cat", 1.0)
lambda_cont = kwargs.get("lambda_cont", 1.0)
reduction = kwargs.get("reduction", "mean")
self.denoising_loss = DenoisingLoss(lambda_cat, lambda_cont, reduction)
self._save_history(path)

def _compute_loss(
self,
g_projs: Optional[Tuple[Tensor, Tensor]],
x_cat_and_cat_: Optional[Tuple[Tensor, Tensor]],
x_cont_and_cont_: Optional[Tuple[Tensor, Tensor]],
) -> Tensor:
contrastive_loss = (
self.contrastive_loss(g_projs)
if self.loss_type in ["contrastive", "both"]
else torch.tensor(0.0)
self._save_model_and_optimizer(
path, save_state_dict, save_optimizer, model_filename
)
denoising_loss = (
self.denoising_loss(x_cat_and_cat_, x_cont_and_cont_)
if self.loss_type in ["denoising", "both"]
else torch.tensor(0.0)

def _save_history(self, path: str):
# 'history' here refers to both, the training/evaluation history and
# the lr history
save_dir = Path(path)
history_dir = save_dir / "history"
history_dir.mkdir(exist_ok=True, parents=True)

# the trainer is run with the History Callback by default
with open(history_dir / "train_eval_history.json", "w") as teh:
json.dump(self.history, teh) # type: ignore[attr-defined]

has_lr_history = any(
[clbk.__class__.__name__ == "LRHistory" for clbk in self.callbacks]
)
if self.lr_scheduler is not None and has_lr_history:
with open(history_dir / "lr_history.json", "w") as lrh:
json.dump(self.lr_history, lrh) # type: ignore[attr-defined]

return contrastive_loss + denoising_loss
def _save_model_and_optimizer(
self,
path: str,
save_state_dict: bool,
save_optimizer: bool,
model_filename: str,
):

model_path = Path(path) / model_filename
if save_state_dict and save_optimizer:
torch.save(
{
"model_state_dict": self.cd_model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
},
model_path,
)
elif save_state_dict and not save_optimizer:
torch.save(self.cd_model.state_dict(), model_path)
elif not save_state_dict and save_optimizer:
torch.save(
{
"model": self.cd_model,
"optimizer": self.optimizer, # this can be a MultipleOptimizer
},
model_path,
)
else:
torch.save(self.cd_model, model_path)

def _set_reduce_on_plateau_criterion(
self, lr_scheduler, reducelronplateau_criterion
Expand Down Expand Up @@ -233,6 +277,37 @@ def _set_device_and_num_workers(**kwargs):
num_workers = kwargs.get("num_workers", default_num_workers)
return device, num_workers

def _set_loss_fn(self, **kwargs):
if self.loss_type in ["contrastive", "both"]:
temperature = kwargs.get("temperature", 0.1)
reduction = kwargs.get("reduction", "mean")
self.contrastive_loss = InfoNCELoss(temperature, reduction)

if self.loss_type in ["denoising", "both"]:
lambda_cat = kwargs.get("lambda_cat", 1.0)
lambda_cont = kwargs.get("lambda_cont", 1.0)
reduction = kwargs.get("reduction", "mean")
self.denoising_loss = DenoisingLoss(lambda_cat, lambda_cont, reduction)

def _compute_loss(
self,
g_projs: Optional[Tuple[Tensor, Tensor]],
x_cat_and_cat_: Optional[Tuple[Tensor, Tensor]],
x_cont_and_cont_: Optional[Tuple[Tensor, Tensor]],
) -> Tensor:
contrastive_loss = (
self.contrastive_loss(g_projs)
if self.loss_type in ["contrastive", "both"]
else torch.tensor(0.0)
)
denoising_loss = (
self.denoising_loss(x_cat_and_cat_, x_cont_and_cont_)
if self.loss_type in ["denoising", "both"]
else torch.tensor(0.0)
)

return contrastive_loss + denoising_loss

@staticmethod
def _check_model_is_supported(model: ModelWithAttention):
if model.__class__.__name__ == "TabPerceiver":
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import os
import sys
import json
import warnings
from abc import ABC, abstractmethod
from pathlib import Path

import numpy as np
import torch
Expand Down Expand Up @@ -66,22 +68,90 @@ def __init__(
def pretrain(
self,
X_tab: np.ndarray,
X_val: Optional[np.ndarray],
X_tab_val: Optional[np.ndarray],
val_split: Optional[float],
validation_freq: int,
n_epochs: int,
batch_size: int,
):
raise NotImplementedError("Trainer.pretrain method not implemented")

@abstractmethod
def save(
self,
path: str,
save_state_dict: bool,
save_optimizer: bool,
model_filename: str,
):
raise NotImplementedError("Trainer.save method not implemented")
r"""Saves the model, training and evaluation history (if any) to disk
Parameters
----------
path: str
path to the directory where the model and the feature importance
attribute will be saved.
save_state_dict: bool, default = False
Boolean indicating whether to save directly the model or the
model's state dictionary
save_optimizer: bool, default = False
Boolean indicating whether to save the optimizer or not
model_filename: str, Optional, default = "ed_model.pt"
filename where the model weights will be store
"""

self._save_history(path)

self._save_model_and_optimizer(
path, save_state_dict, save_optimizer, model_filename
)

def _save_history(self, path: str):
# 'history' here refers to both, the training/evaluation history and
# the lr history
save_dir = Path(path)
history_dir = save_dir / "history"
history_dir.mkdir(exist_ok=True, parents=True)

# the trainer is run with the History Callback by default
with open(history_dir / "train_eval_history.json", "w") as teh:
json.dump(self.history, teh) # type: ignore[attr-defined]

has_lr_history = any(
[clbk.__class__.__name__ == "LRHistory" for clbk in self.callbacks]
)
if self.lr_scheduler is not None and has_lr_history:
with open(history_dir / "lr_history.json", "w") as lrh:
json.dump(self.lr_history, lrh) # type: ignore[attr-defined]

def _save_model_and_optimizer(
self,
path: str,
save_state_dict: bool,
save_optimizer: bool,
model_filename: str,
):

model_path = Path(path) / model_filename
if save_state_dict and save_optimizer:
torch.save(
{
"model_state_dict": self.ed_model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
},
model_path,
)
elif save_state_dict and not save_optimizer:
torch.save(self.ed_model.state_dict(), model_path)
elif not save_state_dict and save_optimizer:
torch.save(
{
"model": self.ed_model,
"optimizer": self.optimizer, # this can be a MultipleOptimizer
},
model_path,
)
else:
torch.save(self.ed_model, model_path)

def _set_reduce_on_plateau_criterion(
self, lr_scheduler, reducelronplateau_criterion
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,3 @@
import json
from pathlib import Path

import numpy as np
import torch
from tqdm import trange
Expand Down Expand Up @@ -259,46 +256,6 @@ def fit(
X_tab, X_tab_val, val_split, validation_freq, n_epochs, batch_size
)

def save(
self,
path: str,
save_state_dict: bool = False,
model_filename: str = "cd_model.pt",
):
r"""Saves the model, training and evaluation history (if any) to disk
Parameters
----------
path: str
path to the directory where the model and the feature importance
attribute will be saved.
save_state_dict: bool, default = False
Boolean indicating whether to save directly the model or the
model's state dictionary
model_filename: str, Optional, default = "cd_model.pt"
filename where the model weights will be store
"""
save_dir = Path(path)
history_dir = save_dir / "history"
history_dir.mkdir(exist_ok=True, parents=True)

# the trainer is run with the History Callback by default
with open(history_dir / "train_eval_history.json", "w") as teh:
json.dump(self.history, teh) # type: ignore[attr-defined]

has_lr_history = any(
[clbk.__class__.__name__ == "LRHistory" for clbk in self.callbacks]
)
if self.lr_scheduler is not None and has_lr_history:
with open(history_dir / "lr_history.json", "w") as lrh:
json.dump(self.lr_history, lrh) # type: ignore[attr-defined]

model_path = save_dir / model_filename
if save_state_dict:
torch.save(self.cd_model.state_dict(), model_path)
else:
torch.save(self.cd_model, model_path)

def _train_step(self, X_tab: Tensor, batch_idx: int) -> float:
X = X_tab.to(self.device)

Expand Down Expand Up @@ -337,7 +294,7 @@ def _train_eval_split(
train_set = TensorDataset(torch.from_numpy(X))
eval_set = TensorDataset(torch.from_numpy(X_tab_val))
elif val_split is not None:
X_tr, X_tab_val = train_test_split(
X_tr, X_tab_val = train_test_split( # type: ignore
X, test_size=val_split, random_state=self.seed
)
train_set = TensorDataset(torch.from_numpy(X_tr))
Expand Down
Loading

0 comments on commit deb4f2e

Please sign in to comment.