Skip to content

Commit

Permalink
Fixed critical ddof error
Browse files Browse the repository at this point in the history
  • Loading branch information
jolespin committed Dec 17, 2020
1 parent d4cb93a commit 430ddc5
Show file tree
Hide file tree
Showing 8 changed files with 166 additions and 55 deletions.
13 changes: 8 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,11 +112,11 @@ vlr = coda.pairwise_vlr(X)
# Pairwise rho from Erb et al. 2016
rhos = coda.pairwise_rho(X)
# print(rhos.iloc[:4,:4])
# Otu000514 Otu000001 Otu000038 Otu000003
# Otu000514 1.000000 0.469205 0.168476 0.207426
# Otu000001 0.469205 1.000000 0.267368 0.468015
# Otu000038 0.168476 0.267368 1.000000 -0.033662
# Otu000003 0.207426 0.468015 -0.033662 1.000000
# Otu000514 Otu000001 Otu000038 Otu000003
# Otu000514 1.000000 0.470328 0.170234 0.209101
# Otu000001 0.470328 1.000000 0.268917 0.469140
# Otu000038 0.170234 0.268917 1.000000 -0.031477
# Otu000003 0.209101 0.469140 -0.031477 1.000000
```

#### Isometric log-ratio transform *without* tree (requires scikit-bio)
Expand Down Expand Up @@ -158,3 +158,6 @@ X_ilr_with_tree = coda.transform_ilr(X, tree)
# S-1409-42.B_RD1 -6.413369 10.215028 9.148268e-17 3.511751e-15
# 1073.1_RD1 -4.608491 7.340271 2.027126e-16 2.519377e-15
```

#### Notes:
* Versions prior to v2020.12.16 used `ddof=0` for all variance except during the `vlr` calculation. This was because `pandas._libs.algos.nancorr` uses `ddof=1` and not `ddof=0`. This caused specific `rho` values not to be bound by [-1,1]. To retain the performance of `nancorr`, I've set all `ddof=1` to match `nancorr`.
10 changes: 7 additions & 3 deletions build/lib/compositional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
# =======
# https://opensource.org/licenses/BSD-3-Clause
#
# Copyright 2018 Josh L. Espinoza
# Copyright 2020 Josh L. Espinoza
#
# Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
#
Expand All @@ -33,7 +33,7 @@
# =======
# Version
# =======
__version__= "2020.05.14b"
__version__= "2020.05.19"
__author__ = "Josh L. Espinoza"
__email__ = "[email protected], [email protected]"
__url__ = "https://github.com/jolespin/compositional"
Expand All @@ -44,7 +44,11 @@
# Direct Exports
# =======
__functions__ = [
"transform_xlr", "transform_clr", "transform_iqlr", "pairwise_vlr", "pairwise_rho",
# Transforms
"transform_xlr", "transform_clr", "transform_iqlr", "transform_ilr",
# Pairwise
"pairwise_vlr", "pairwise_rho","pairwise_phi",
# Utilities
"check_packages",
]
__classes__ = []
Expand Down
177 changes: 139 additions & 38 deletions build/lib/compositional/compositional.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# -*- coding: utf-8 -*-
from __future__ import print_function, division

# Built-ins
import sys,warnings,functools
from collections import Mapping
Expand Down Expand Up @@ -365,16 +366,18 @@ def pairwise_vlr(X):
return vlr

# Pairwise rho proportionality
def pairwise_rho(X, reference_components=None, centroid="mean", interval_type="open"):
def pairwise_rho(X=None, reference_components=None, centroid="mean", interval_type="open", xlr=None, vlr=None):
"""
# Description
Pairwise variance log-ratio
Pairwise proportionality `rho` (Erb et al. 2016)
# Parameters
* X: pd.DataFrame or 2D np.array
* X: pd.DataFrame or 2D np.array of compositional data (rows=samples, columns=components)
* reference_components: See `transform_xlr`. Can also be `percentiles` for `transform_iqlr` or 'iqlr' string.
* interval: 'open' = (a,b) and 'closed' = [a,b]. 'open' is used by `propr` R package:
* centroid: See `transform_xlr`
* xlr: pd.DataFrame or 2D np.array of transformed compositional data (e.g. clr, iqlr) (must be used with `vlr` and not `X`)
* vlr: pd.DataFrame or 2D np.array of variance log-ratios (must be used with `xlr` and not `X`)
Adapted from the following source:
Expand All @@ -384,33 +387,111 @@ def pairwise_rho(X, reference_components=None, centroid="mean", interval_type="o
* https://link.springer.com/article/10.1007/s12064-015-0220-8
ddof=1 for compatibility with propr package in R
"""
n, m = X.shape
components = None
if isinstance(X, pd.DataFrame):
components = X.columns
X = X.values

vlr = pairwise_vlr(X)

if isinstance(reference_components, str):
if reference_components.lower() == "iqlr":
reference_components = (25,75)
# Use percentiles
if isinstance(reference_components, tuple):
X_xlr = transform_iqlr(X,percentile_range=reference_components, centroid=centroid, interval_type=interval_type, zeros_ok=False)
# Use CLR
else:
X_xlr = transform_xlr(X, reference_components=reference_components, centroid=centroid, zeros_ok=False)
# Compute xlr and vlr from X
if X is not None:
assert all(map(lambda x: x is None, [xlr, vlr])), "If `X` is not None then `xlr` and `vlr` cannot be provided."
if isinstance(X, pd.DataFrame):
components = X.columns
X = X.values

variances = np.var(X_xlr, axis=0) # variances = np.var(X_xlr, axis=0, ddof=ddof)
vlr = pairwise_vlr(X)
if isinstance(reference_components, str):
if reference_components.lower() == "iqlr":
reference_components = (25,75)
# Use percentiles
if isinstance(reference_components, tuple):
xlr = transform_iqlr(X,percentile_range=reference_components, centroid=centroid, interval_type=interval_type, zeros_ok=False)
# Use CLR
else:
xlr = transform_xlr(X, reference_components=reference_components, centroid=centroid, zeros_ok=False)
# Provide xlr and vlr
else:
assert all(map(lambda x: x is not None, [xlr,vlr])), "If `X` is None then `xlr` and `vlr` must be provided."
assert type(xlr) is type(vlr), "`xlr` and `vlr` should be same type (i.e. pd.DataFrame, np.ndarray)"
if isinstance(xlr, pd.DataFrame):
assert np.all(xlr.columns == vlr.columns) & np.all(xlr.columns == vlr.index), "`xlr.columns` need to be the same as `vlr.index` and `vlr.columns`"
components = xlr.columns
xlr = xlr.values
vlr = vlr.values

# rho (Erb et al. 2016)
n, m = xlr.shape
variances = np.var(xlr, axis=0) # variances = np.var(X_xlr, axis=0, ddof=ddof)
rhos = 1 - (vlr/np.add.outer(variances,variances))
if components is not None:
rhos = pd.DataFrame(rhos, index=components, columns=components)
return rhos

# Pairwise phi proportionality
def pairwise_phi(X=None, symmetrize=True, triangle="lower", reference_components=None, centroid="mean", interval_type="open", xlr=None, vlr=None):
"""
# Description
Pairwise proportionality `phi` (Lovell et al. 2015)
# Parameters
* X: pd.DataFrame or 2D np.array of compositional data (rows=samples, columns=components)
* symmetrize: Force symmetric matrix
* triangle: Use lower or upper triangle for reference during symmetrization
* reference_components: See `transform_xlr`. Can also be `percentiles` for `transform_iqlr` or 'iqlr' string.
* interval: 'open' = (a,b) and 'closed' = [a,b]. 'open' is used by `propr` R package:
* centroid: See `transform_xlr`
* xlr: pd.DataFrame or 2D np.array of transformed compositional data (e.g. clr, iqlr) (must be used with `vlr` and not `X`)
* vlr: pd.DataFrame or 2D np.array of variance log-ratios (must be used with `xlr` and not `X`)
Adapted from the following source:
* https://github.com/tpq/propr
Citation:
* https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004075
ddof=1 for compatibility with propr package in R
"""
components = None
# Compute xlr and vlr from X
if X is not None:
assert all(map(lambda x: x is None, [xlr, vlr])), "If `X` is not None then `xlr` and `vlr` cannot be provided."
if isinstance(X, pd.DataFrame):
components = X.columns
X = X.values

vlr = pairwise_vlr(X)
if isinstance(reference_components, str):
if reference_components.lower() == "iqlr":
reference_components = (25,75)
# Use percentiles
if isinstance(reference_components, tuple):
xlr = transform_iqlr(X,percentile_range=reference_components, centroid=centroid, interval_type=interval_type, zeros_ok=False)
# Use CLR
else:
xlr = transform_xlr(X, reference_components=reference_components, centroid=centroid, zeros_ok=False)
# Provide xlr and vlr
else:
assert all(map(lambda x: x is not None, [xlr,vlr])), "If `X` is None then `xlr` and `vlr` must be provided."
assert type(xlr) is type(vlr), "`xlr` and `vlr` should be same type (i.e. pd.DataFrame, np.ndarray)"
if isinstance(xlr, pd.DataFrame):
assert np.all(xlr.columns == vlr.columns) & np.all(xlr.columns == vlr.index), "`xlr.columns` need to be the same as `vlr.index` and `vlr.columns`"
components = xlr.columns
xlr = xlr.values
vlr = vlr.values

# phi (Lovell et al. 2015)
n, m = xlr.shape
variances = np.var(xlr, axis=0)#[:,np.newaxis]
phis = vlr/variances
if symmetrize:
assert triangle in {"lower","upper"}, "`triangle` must be one of the following: {'lower','upper'}"
if triangle == "upper":
idx_triangle = np.tril_indices(m, -1)
if triangle == "lower":
idx_triangle = np.triu_indices(m, 1)
phis[idx_triangle] = phis.T[idx_triangle]
if components is not None:
phis = pd.DataFrame(phis, index=components, columns=components)
return phis


# ILR Transformation
@check_packages(["skbio"])
def transform_ilr(X:pd.DataFrame, tree=None, polytomy_kws=dict(), verbose=True):
def transform_ilr(X:pd.DataFrame, tree=None, check_polytomy=True, verbose=True):
"""
if `tree` is None then orthonormal basis for Aitchison simplex defaults to J.J.Egozcue orthonormal basis.
"""
Expand All @@ -422,7 +503,7 @@ def transform_ilr(X:pd.DataFrame, tree=None, polytomy_kws=dict(), verbose=True)
assert not np.any(X == 0), "`X` cannot contain zeros because of log-transforms. Preprocess or use a pseudocount e.g. (X+1) or (X/(1/X.shape[1]**2))"

# Determine tree module
def _which_tree_type(tree):
def _infer_tree_type(tree):
tree_type = None
query_type = str(tree.__class__).split("'")[1].split(".")[0]
if query_type in {"skbio"}:
Expand All @@ -440,51 +521,71 @@ def _get_leaves(tree, tree_type):
leaves_in_tree = set(tree.get_leaf_names())
return leaves_in_tree

def _check_polytomy(tree, tree_type):
if tree_type == "ete":
# Check bifurcation
n_internal_nodes = len(list(filter(lambda node:node.is_leaf() == False, tree.traverse())))
n_leaves = len(list(filter(lambda node:node.is_leaf(), tree.traverse())))
if n_internal_nodes < (n_leaves - 1):
raise Exception("Please resolve tree polytomy and force bifurcation: Use `tree.resolve_polytomy()` before naming nodes for `ete`")

if tree_type == "skbio":
# Check bifurcation
n_internal_nodes = len(list(filter(lambda node:node.is_tip() == False, tree.traverse())))
n_leaves = len(list(filter(lambda node:node.is_tip(), tree.traverse())))
if n_internal_nodes < (n_leaves - 1):
raise Exception("Please resolve tree polytomy and force bifurcation: Use `tree.bifurcate()` before naming nodes for `skbio`")

# ETE Tree
if sys.version_info.major == 2:
ete_info = ("ete2","ete")
if sys.version_info.major == 3:
ete_info = ("ete3","ete")
@check_packages([ete_info])
def _ete_to_skbio_resolve_polytomy( tree, polytomy_kws):
# Check bifurcation
n_internal_nodes = len(list(filter(lambda node:node.is_leaf() == False, tree.traverse())))
n_leaves = len(list(filter(lambda node:node.is_leaf(), tree.traverse())))
if n_internal_nodes < (n_leaves - 1):
tree.resolve_polytomy(**polytomy_kws)
if verbose:
print("Resolving tree polytomy and forcing bifurcation", file=sys.stderr)
def _ete_to_skbio( tree):
# Convert ete to skbio
tree = TreeNode.read(StringIO(tree.write(format=1, format_root_node=True)), convert_underscores=False)
return tree

def _prune_tree(tree, tree_type, leaves):
if tree_type == "ete":
tree.prune(leaves)
if tree_type == "skbio":
tree = tree.shear(leaves)
tree.prune()
return tree

# ILR with tree
@check_packages(["gneiss"], import_into_backend=False)
def _ilr_with_tree(X, tree, polytomy_kws):
def _ilr_with_tree(X, tree):
# Import ilr_transform from gneiss
from gneiss.composition import ilr_transform

# Check tree type
tree_type = _which_tree_type(tree)
tree_type = _infer_tree_type(tree)

# Check leaves
components = set(X.columns)
leaves_in_tree = _get_leaves(tree=tree, tree_type=tree_type)
assert leaves_in_tree <= components, "Not all components (X.columns) are represented in tree"
assert components <= leaves_in_tree, "Not all components (X.columns) are represented in tree"

# Prune tree
if components < leaves_in_tree:
tree = tree.copy(method="deepcopy")
tree = tree.copy()
n_leaves_before_pruning = len(leaves_in_tree)
tree.prune(leaf_set_from_X)
tree = _prune_tree(tree=tree, tree_type=tree_type, leaves=components)
n_leaves_after_pruning = len(_get_leaves(tree=tree, tree_type=tree_type))
n_pruned = n_leaves - n_leaves_after_pruning
n_pruned = n_leaves_before_pruning - n_leaves_after_pruning
if verbose:
print("Pruned {} attributes to match components (X.columns)".format(n_pruned), file=sys.stderr)

# Polytomy
if check_polytomy:
_check_polytomy(tree=tree, tree_type=tree_type)

# ETE
if tree_type == "ete":
tree = _ete_to_skbio_resolve_polytomy(tree=tree, polytomy_kws=polytomy_kws)
tree = _ete_to_skbio(tree=tree)
return ilr_transform(table=X, tree=tree)

# ILR without tree
Expand All @@ -496,5 +597,5 @@ def _ilr_without_tree(X):
return _ilr_without_tree(X=X)
# With tree
else:
return _ilr_with_tree(X=X, tree=tree, polytomy_kws=polytomy_kws)
return _ilr_with_tree(X=X, tree=tree)

2 changes: 1 addition & 1 deletion compositional.egg-info/PKG-INFO
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Metadata-Version: 1.0
Name: compositional
Version: 2020.5.16
Version: 2020.12.16
Summary: Compositional data analysis in Python
Home-page: https://github.com/jolespin/compositional
Author: Josh L. Espinoza
Expand Down
1 change: 1 addition & 0 deletions compositional.egg-info/SOURCES.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ README.md
setup.py
compositional/__init__.py
compositional/compositional.py
compositional.egg-info/Icon
compositional.egg-info/PKG-INFO
compositional.egg-info/SOURCES.txt
compositional.egg-info/dependency_links.txt
Expand Down
2 changes: 1 addition & 1 deletion compositional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
# =======
# Version
# =======
__version__= "2020.05.19"
__version__= "2020.12.16"
__author__ = "Josh L. Espinoza"
__email__ = "[email protected], [email protected]"
__url__ = "https://github.com/jolespin/compositional"
Expand Down
12 changes: 6 additions & 6 deletions compositional/compositional.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,7 +277,7 @@ def transform_clr(X, return_zeros_as_neginfinity=False, zeros_ok=True):
return transform_xlr(X, reference_components=None, centroid="mean", return_zeros_as_neginfinity=return_zeros_as_neginfinity, zeros_ok=zeros_ok)

# Interquartile range log-ratio transform
def transform_iqlr(X, percentile_range=(25,75), centroid="mean", interval_type="open", return_zeros_as_neginfinity=False, zeros_ok=True, ddof=0):
def transform_iqlr(X, percentile_range=(25,75), centroid="mean", interval_type="open", return_zeros_as_neginfinity=False, zeros_ok=True, ddof=1):
"""
Wrapper around `transform_xlr`
Expand Down Expand Up @@ -358,7 +358,7 @@ def pairwise_vlr(X):
raise Exception("N={} zeros detected in `X`. Either preprocess or add pseudocounts.".format(n_zeros))

X_log = np.log(X)
covariance = nancorr(X_log, cov=True) # covariance = np.cov(X_log.T, ddof=ddof)
covariance = nancorr(X_log, cov=True) # covariance = np.cov(X_log.T, ddof=1)
diagonal = np.diagonal(covariance)
vlr = -2*covariance + diagonal[:,np.newaxis] + diagonal
if components is not None:
Expand Down Expand Up @@ -417,7 +417,7 @@ def pairwise_rho(X=None, reference_components=None, centroid="mean", interval_ty

# rho (Erb et al. 2016)
n, m = xlr.shape
variances = np.var(xlr, axis=0) # variances = np.var(X_xlr, axis=0, ddof=ddof)
variances = np.var(xlr, axis=0, ddof=1) # variances = np.var(X_xlr, axis=0, ddof=ddof)
rhos = 1 - (vlr/np.add.outer(variances,variances))
if components is not None:
rhos = pd.DataFrame(rhos, index=components, columns=components)
Expand Down Expand Up @@ -475,7 +475,7 @@ def pairwise_phi(X=None, symmetrize=True, triangle="lower", reference_components

# phi (Lovell et al. 2015)
n, m = xlr.shape
variances = np.var(xlr, axis=0)#[:,np.newaxis]
variances = np.var(xlr, axis=0, ddof=1)#[:,np.newaxis]
phis = vlr/variances
if symmetrize:
assert triangle in {"lower","upper"}, "`triangle` must be one of the following: {'lower','upper'}"
Expand Down Expand Up @@ -503,7 +503,7 @@ def transform_ilr(X:pd.DataFrame, tree=None, check_polytomy=True, verbose=True
assert not np.any(X == 0), "`X` cannot contain zeros because of log-transforms. Preprocess or use a pseudocount e.g. (X+1) or (X/(1/X.shape[1]**2))"

# Determine tree module
def _which_tree_type(tree):
def _infer_tree_type(tree):
tree_type = None
query_type = str(tree.__class__).split("'")[1].split(".")[0]
if query_type in {"skbio"}:
Expand Down Expand Up @@ -562,7 +562,7 @@ def _ilr_with_tree(X, tree):
from gneiss.composition import ilr_transform

# Check tree type
tree_type = _which_tree_type(tree)
tree_type = _infer_tree_type(tree)

# Check leaves
components = set(X.columns)
Expand Down
Loading

0 comments on commit 430ddc5

Please sign in to comment.