Skip to content

jindeok/Grad-Align-full

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Grad-Align

Source code for the papers

  • Jin-Duk et al. "Grad-Align: Gradual Network Alignment via Graph Neural Networks" AAAI-22 (Student Poster Program)
  • Jin-Duk et al. "On the Power of Gradual Network Alignment Using Dual-Perception Similarities". IEEE TPAMI

Pytorch_geometric (https://pytorch-geometric.readthedocs.io/en/latest/) package is used for the implementation of graph neural networks (GNNs).

Dependancy

Running

run main.py script file

or in your prompt, type

python main.py --graphname 'fb-tt' --k_hop 2 --mode 'not_perturbed'

  • --graphname can be either one dataset of the three ('fb-tt' for Facebook vs. Twitter dataset, 'douban' for Douban online vs. offline dataset, 'econ' for Econ perturbed pair.)
  • Other description for each arguments are typed in '--help' arguments in main.py argparse.
  • for the implemenation of the graphname 'econ', --mode should be changed to 'perturbed' instead of 'not_perturbed'

etc.

If you need any further information, please e-mail me : [email protected]

About

In IEEE TPAMI, AAAI'22

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages