Skip to content
/ CF-KAN Public

KAN (Kolmogorov-Arnold Network)-based Recommendation (CF)

Notifications You must be signed in to change notification settings

jindeok/CF-KAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CF-KAN

KAN (Kolmogorov-Arnold Network)-based Recommender System (Collaborative Filtering (CF))

overview_v2

CF-KAN is a recommendation method (collaborative filtering) based on the Kolmogorov-Arnold Network (KAN) approach. This research leverages and explores the power of KAN for CF-based recommendation.

** Our paper (CF-KAN) is now available at arXiv: https://www.arxiv.org/abs/2409.05878**

Running

python main.py

The Results (Recommendation Accuracy)

We comprehensively compare CF-KAN with the following categories of recommendation models: Matrix factorization-based methods: MF-BPR, NeuMF, and DMF; Autoencoder-based methods: CDAE, Multi-DAE, and RecVAE; GCN-based methods: SpectralCF, NGCF ,LightGCN, SGL, and NCL; Generative model-based methods: CFGAN, RecVAE, and DiffRec.

Method ML-1M Yelp Anime
R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
MF-BPR 0.0876 0.1503 0.0749 0.0966 0.0341 0.0560 0.0210 0.0341 0.1521 0.2449 0.2925 0.3153
NeuMF 0.0845 0.1465 0.0759 0.0965 0.0378 0.0637 0.0230 0.0308 0.1531 0.2442 0.3277 0.3259
DMF 0.0799 0.1368 0.0731 0.0921 0.0342 0.0588 0.0208 0.0282 0.1386 0.2161 0.3277 0.3122
CDAE 0.0991 0.1705 0.0829 0.1078 0.0444 0.0703 0.0280 0.0360 0.2031 0.2845 0.4652 0.4301
MultiDAE 0.0975 0.1707 0.0820 0.1046 0.0531 0.0876 0.0316 0.0421 0.2022 0.2882 0.4577 0.4125
RecVAE 0.0835 0.1422 0.0769 0.0963 0.0493 0.0824 0.0303 0.0403 0.2137 0.3068 0.4105 0.4068
SpectralCF 0.0751 0.1291 0.0740 0.0909 0.0368 0.0572 0.0201 0.0298 0.1633 0.2564 0.3102 0.3236
NGCF 0.0864 0.1484 0.0805 0.1038 0.0417 0.0708 0.0255 0.0346 0.2071 0.3043 0.3937 0.3827
LightGCN 0.0824 0.1419 0.0793 0.1006 0.0505 0.0858 0.0312 0.0417 0.2071 0.3043 0.3937 0.3827
SGL 0.0885 0.1575 0.0802 0.1029 0.0564 0.0944 0.0346 0.0462 0.1994 0.2918 0.3748 0.3652
NCL 0.0878 0.1471 0.0819 0.1011 0.0535 0.0906 0.0326 0.0438 0.2063 0.3047 0.3919 0.3819
CFGAN 0.0684 0.1181 0.0663 0.0828 0.0206 0.0347 0.0129 0.0172 0.1946 0.2889 0.4601 0.4289
DiffRec 0.1021 0.1763 0.0877 0.1131 0.0554 0.0914 0.0345 0.0452 0.2104 0.3012 0.5047 0.4649
CF-KAN 0.1065 0.1831 0.0894 0.1152 0.0590 0.0961 0.0359 0.0471 0.2287 0.3261 0.5256 0.4875

If you found this project is helpful for your research, 🌟STAR🌟 this repository

Citation

If our work was helpful for your project, cite our work :)

@article{park2024cf,

title={CF-KAN: Kolmogorov-Arnold Network-based Collaborative Filtering to Mitigate Catastrophic Forgetting in Recommender Systems},

author={Park, Jin-Duk and Kim, Kyung-Min and Shin, Won-Yong},

journal={arXiv preprint arXiv:2409.05878},

year={2024} }

Etc.

For the implementation of KANs, I've referred to the following repos: EfficentKAN, Visualization API

About

KAN (Kolmogorov-Arnold Network)-based Recommendation (CF)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages