A multi-object-tracking algorithm uses YOLO v3, deep_sort and optical flow based on Kanade–Lucas–Tomasi (KLT).
- YOLO v3 detection
- deep_sort tracker update
- optical flow tracker update
The code has been tested in python 3.5, ubuntu 16.04.
- tensorflow
- keras
- numpy
- sklearn
- scipy
- scikit-image
- opencv
- Download yolov3 model from YOLO website. Convert this model to a Keras model. For this project, we train a new yolov3 model and use Keras.save_model.
- Run script: python3.5 tracking.py
- test result video 1: https://youtu.be/SKX-EcQnens
- test result video 2: https://youtu.be/56RKbOaInYI
- keras YOLO v3: https://github.com/qqwweee/keras-yolo3
- deep_sort: https://github.com/nwojke/deep_sort
- YOLO v3 deep_sort integration: https://github.com/Qidian213/deep_sort_yolov3
- optical flow: https://github.com/ZheyuanXie/OpticalFlow