-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
INFO: requires different implementation for D-Struct(DAG-GNN) Signed-off-by: Jeroen <[email protected]>
- Loading branch information
Showing
4 changed files
with
370 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,3 +6,4 @@ Untitled.ipynb | |
/wandb | ||
/d-struct-notears | ||
/d-struct-synth | ||
/d-struct-test_experiment |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
from typing import Any | ||
import numpy as np | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from torch.autograd import Variable | ||
|
||
import pytorch_lightning as pl | ||
|
||
import src.utils as ut | ||
|
||
|
||
# Yue et al. | ||
class DAGGNN_MLPEncoder(nn.Module): | ||
"""MLP encoder module.""" | ||
def __init__(self, n_in, n_xdims, n_hid, n_out, adj_A, batch_size, do_prob=0., factor=True, tol = 0.1): | ||
super(DAGGNN_MLPEncoder, self).__init__() | ||
|
||
self.adj_A = nn.Parameter(Variable(torch.from_numpy(adj_A).double(), requires_grad=True)) | ||
self.factor = factor | ||
|
||
self.Wa = nn.Parameter(torch.zeros(n_out), requires_grad=True) | ||
self.fc1 = nn.Linear(n_xdims, n_hid, bias = True) | ||
self.fc2 = nn.Linear(n_hid, n_out, bias = True) | ||
self.dropout_prob = do_prob | ||
self.batch_size = batch_size | ||
self.z = nn.Parameter(torch.tensor(tol)) | ||
self.z_positive = nn.Parameter(torch.ones_like(torch.from_numpy(adj_A)).double()) | ||
self.init_weights() | ||
|
||
def init_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Linear): | ||
nn.init.xavier_normal_(m.weight.data) | ||
elif isinstance(m, nn.BatchNorm1d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
|
||
|
||
def forward(self, inputs, rel_rec, rel_send): | ||
|
||
if torch.sum(self.adj_A != self.adj_A): | ||
print('nan error \n') | ||
|
||
# to amplify the value of A and accelerate convergence. | ||
adj_A1 = torch.sinh(3.*self.adj_A) | ||
|
||
# adj_Aforz = I-A^T | ||
adj_Aforz = ut.preprocess_adj_new(adj_A1) | ||
|
||
adj_A = torch.eye(adj_A1.size()[0]).double() | ||
H1 = F.relu((self.fc1(inputs))) | ||
x = (self.fc2(H1)) | ||
logits = torch.matmul(x+self.Wa, adj_Aforz) -self.Wa | ||
|
||
return x, logits, adj_A1, adj_A, self.z, self.z_positive, self.adj_A, self.Wa | ||
|
||
# Yue et al. | ||
class DAGGNN_MLPDecoder(nn.Module): | ||
"""MLP decoder module.""" | ||
|
||
def __init__(self, n_in_node, n_in_z, n_out, encoder, data_variable_size, batch_size, n_hid, | ||
do_prob=0.): | ||
super(DAGGNN_MLPDecoder, self).__init__() | ||
|
||
self.out_fc1 = nn.Linear(n_in_z, n_hid, bias = True) | ||
self.out_fc2 = nn.Linear(n_hid, n_out, bias = True) | ||
|
||
self.batch_size = batch_size | ||
self.data_variable_size = data_variable_size | ||
|
||
self.dropout_prob = do_prob | ||
|
||
self.init_weights() | ||
|
||
def init_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Linear): | ||
nn.init.xavier_normal_(m.weight.data) | ||
m.bias.data.fill_(0.0) | ||
elif isinstance(m, nn.BatchNorm1d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
|
||
def forward(self, inputs, input_z, n_in_node, rel_rec, rel_send, origin_A, adj_A_tilt, Wa): | ||
|
||
#adj_A_new1 = (I-A^T)^(-1) | ||
adj_A_new1 = ut.preprocess_adj_new1(origin_A) | ||
mat_z = torch.matmul(input_z+Wa, adj_A_new1)-Wa | ||
|
||
H3 = F.relu(self.out_fc1((mat_z))) | ||
out = self.out_fc2(H3) | ||
|
||
return mat_z, out, adj_A_tilt | ||
|
||
|
||
|
||
class DAG_GNN(pl.LightningModule): | ||
def __init__( | ||
self, | ||
dim: int, | ||
n: int, | ||
A: np.ndarray, | ||
tau_A: float=.0, | ||
lambda_A: float=.0, | ||
c_A: float=1., | ||
lr: float=.001, | ||
lr_decay: float=30, | ||
gamma: float=.1, | ||
): | ||
|
||
super().__init__() | ||
|
||
self.dim = dim | ||
self.n = n | ||
self.A = A | ||
self.tau_A = tau_A | ||
self.lambda_A = lambda_A | ||
self.c_A = c_A | ||
|
||
self.encoder = DAGGNN_MLPEncoder( | ||
n_in=self.dim, | ||
n_xdims=self.dim, | ||
n_hid=self.dim, | ||
n_out=self.dim, | ||
adj_A=self.A, | ||
batch_size=256 | ||
) | ||
|
||
self.decoder = DAGGNN_MLPDecoder( | ||
n_in_node=self.dim, | ||
n_in_z=self.dim, | ||
n_out=self.dim, | ||
encoder=self.encoder, | ||
data_variable_size=self.dim, | ||
batch_size=256, | ||
n_hid=self.dim | ||
) | ||
|
||
self.lr = lr | ||
self.lr_decay = lr_decay | ||
self.gamma = gamma | ||
|
||
off_diag = np.ones([self.dim, self.dim]) - np.eye(self.dim) | ||
|
||
rel_rec = np.array(ut.encode_onehot(np.where(off_diag)[1]), dtype=np.float64) | ||
rel_send = np.array(ut.encode_onehot(np.where(off_diag)[0]), dtype=np.float64) | ||
rel_rec = torch.DoubleTensor(rel_rec) | ||
rel_send = torch.DoubleTensor(rel_send) | ||
|
||
self.rel_rec = Variable(rel_rec) | ||
self.rel_send = Variable(rel_send) | ||
|
||
self.prox_plus = torch.nn.Threshold(0.,0.) | ||
|
||
|
||
self.triu_indices = ut.get_triu_offdiag_indices(self.dim) | ||
self.tril_indices = ut.get_tril_offdiag_indices(self.dim) | ||
|
||
self.graph = None | ||
|
||
|
||
|
||
def configure_optimizers(self): | ||
optimizer = torch.optim.Adam(list(self.encoder.parameters()) + list(self.decoder.parameters()), lr=self.lr) | ||
scheduler = torch.optim.lr_scheduler.StepLR( | ||
optimizer, step_size=self.lr_decay, gamma=self.gamma | ||
) | ||
return { | ||
"optimizer": optimizer, | ||
"lr_scheduler": scheduler, | ||
} | ||
|
||
def _h_A(self, A, m): | ||
expm_A = ut.matrix_poly(A*A, m) | ||
h_A = torch.trace(expm_A) - m | ||
return h_A | ||
|
||
def stau(self, w, tau): | ||
w1 = self.prox_plus(torch.abs(w)-tau) | ||
return torch.sign(w)*w1 | ||
|
||
def training_step(self, batch, batch_idx): | ||
(X,) = batch | ||
enc_x, logits, origin_A, adj_A_tilt_encoder, z_gap, z_positive, myA, Wa = self.encoder(X, self.rel_rec, self.rel_send) | ||
edges = logits | ||
dec_x, output, adj_A_tilt_decoder = self.decoder(X, edges, self.dim, self.rel_rec, self.rel_send, origin_A, adj_A_tilt_encoder, Wa) | ||
|
||
|
||
target=X | ||
preds=output | ||
variance=0. | ||
|
||
# reconstruction accuracy loss | ||
loss_nll = ut.nll_gaussian(preds, target, variance) | ||
|
||
# KL loss | ||
loss_kl = ut.kl_gaussian_sem(logits) | ||
|
||
# ELBO loss: | ||
loss = loss_kl + loss_nll | ||
|
||
# add A loss | ||
one_adj_A = origin_A # torch.mean(adj_A_tilt_decoder, dim =0) | ||
sparse_loss = self.tau_A * torch.sum(torch.abs(one_adj_A)) | ||
|
||
h_A = self._h_A(origin_A, self.dim) | ||
loss += self.lambda_A * h_A + 0.5 * self.c_A * h_A * h_A + 100. * torch.trace(origin_A*origin_A) + sparse_loss | ||
|
||
self.log('loss', loss) | ||
|
||
self.graph = origin_A.data.clone().numpy() | ||
|
||
return loss | ||
|
||
def test_step(self, batch, batch_idx) -> Any: | ||
B_est = self.graph | ||
B_true = self.trainer.datamodule.DAG | ||
print(f"B_est: {B_est}") | ||
print(f"B_true: {B_true}") | ||
self.log_dict(ut.count_accuracy(B_true, B_est)) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.