Skip to content

Commit

Permalink
Add support for Bezier curves of affine types
Browse files Browse the repository at this point in the history
Easy now that Lerp is separate.

Factor coefficient computation to a separate function. The coefficients are
constant for a given spline, so can be precomputed if the spline is evaluated
multiple times (eg. by an iterator).
  • Loading branch information
jdahlstrom committed Dec 7, 2024
1 parent 4f58176 commit 8d9a3eb
Show file tree
Hide file tree
Showing 2 changed files with 116 additions and 63 deletions.
146 changes: 97 additions & 49 deletions core/src/math/spline.rs
Original file line number Diff line number Diff line change
@@ -1,25 +1,28 @@
//! Bezier curves and splines.
//! Bézier curves and splines.
use alloc::vec::Vec;
use std::array;

use crate::math::{
space::{Affine, Linear},
Lerp,
};

/// A cubic Bezier curve, defined by four control points.
/// A cubic Bézier curve, defined by four control points.
///
/// TODO More info about Beziers
/// TODO More info about Béziers
///
/// ```text
/// p3
/// p1 ____ \
/// \ _-´ `--_ \
/// \ / `-_ |\
/// \ | `-_ | \
/// \| `-_ | \
/// \ `-__ / \
/// p0 `---____-´ p2
///
/// p1
/// \ ____
/// \ _-´ `--_ p3
/// \ / `-_ \
/// \ | `-_ |\
/// \| `-__ / \
/// \ `---_____--´ \
/// p0 \
/// p2
/// ```
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CubicBezier<T>(pub [T; 4]);
Expand Down Expand Up @@ -58,11 +61,14 @@ where

impl<T> CubicBezier<T>
where
T: Affine<Diff: Linear<Scalar = f32> + Clone> + Clone,
T: Affine<Diff: Linear<Scalar = f32>> + Clone,
{
/// Evaluates the value of `self` at `t`
/// Evaluates the value of `self` at `t`.
///
/// Uses De Casteljau's algorithm.
/// For t < 0, returns the first control point. For t > 1, returns the last
/// control point. Uses [De Casteljau's algorithm][1].
///
/// [1]: https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
pub fn eval(&self, t: f32) -> T {
let [p0, p1, p2, p3] = &self.0;
step(t, p0, p3, |t| {
Expand All @@ -72,57 +78,99 @@ where
p01.lerp(&p12, t).lerp(&p12.lerp(&p23, t), t)
})
}
}
impl<T> CubicBezier<T>
where
T: Linear<Scalar = f32> + Clone,
{

/// Evaluates the value of `self` at `t`.
///
/// For t < 0, returns the first control point. For t > 1, returns the last
/// control point.
///
/// Directly evaluates the cubic. Faster but possibly less numerically
/// stable than [`Self::eval`].
pub fn fast_eval(&self, t: f32) -> T {
let [p0, p1, p2, p3] = &self.0;
let [p0, .., p3] = &self.0;
step(t, p0, p3, |t| {
// (p3 - p0) * t^3 + (p1 - p2) * 3t^3
// + (p0 + p2) * 3t^2 - p1 * 6t^2
// + (p1 - p0) * 3t
// + p0

let term3 = &p1.sub(p2).mul(3.0).add(&p3.sub(p0)).mul(t);
let term2 = &p1.mul(-2.0).add(p0).add(p2).mul(3.0);
let term1 = &p1.sub(p0).mul(3.0 * t);
let term0 = p0;

term3.add(term2).mul(t * t).add(term1).add(term0)
// Add a linear combination of the three coefficients
// to `p0` to get the result
let [co3, co2, co1] = self.coefficients();
p0.add(&co3.mul(t).add(&co2).mul(t).add(&co1).mul(t))
})
}

/// Returns the tangent, or direction vector, of `self` at `t`.
///
/// Clamps `t` to the range [0, 1].
pub fn tangent(&self, t: f32) -> T {
pub fn tangent(&self, t: f32) -> T::Diff {
let [p0, p1, p2, p3] = &self.0;
let t = t.clamp(0.0, 1.0);

// (p1 - p2) * 9t^2 + (p3 - p0) * 3t^2
// + (p0 + p2) * 6t - p1 * 12t
// + (p1 - p0) * 3
// 3 (3 (p1 - p2) + (p3 - p0)) * t^2
// + 6 ((p0 - p1 + p2 - p1) * t
// + 3 (p1 - p0)

let term2 = p1.sub(p2).mul(3.0).add(&p3.sub(p0)).mul(t * t);
let term1 = p1.mul(-2.0).add(p0).add(p2).mul(2.0 * t);
let term0 = p1.sub(p0);
let co2: T::Diff = p1.sub(p2).mul(3.0).add(&p3.sub(p0));
let co1: T::Diff = p0.sub(p1).add(&p2.sub(p1)).mul(2.0);
let co0: T::Diff = p1.sub(p0);

term2.add(&term1).add(&term0).mul(3.0)
co2.mul(t).add(&co1).mul(t).add(&co0).mul(3.0)
}

/// Returns the coefficients used to evaluate the spline.
///
/// These are constant as long as the control points do not change,
/// so they can be precomputed when the spline is evaluated several times,
/// for example by an iterator.
///
/// The coefficient values are, from the first to the last:
/// ```text
/// co3 = (p3 - p0) + 3 * (p1 - p2)
/// co2 = 3 * (p0 - p1) + 3 * (p2 - p1)
/// co1 = 3 * (p1 - p0)
/// ```
/// The value of the spline at *t* is then computed as:
/// ```text
/// co3 * t^3 + co2 * t^2 + co1 * t + p0
///
/// = (((co3 * t) + co2 * t) + co1 * t) + p0.
/// ```
fn coefficients(&self) -> [T::Diff; 3] {
let [p0, p1, p2, p3] = &self.0;

// Rewrite the parametric equation into a form where three of the
// coefficients are vectors, their linear combination added to `p0`
// so the equation can be expressed for affine types:
//
// (p3 - p0) * t^3 + (p1 - p2) * 3t^3
// + (p0 + p2) * 3t^2 - p1 * 6t^2
// + (p1 - p0) * 3t
// + p0
// = ((p3 - p0 + 3(p1 - p2)) * t^3
// + 3(p0 - p1 + p2 - p1) * t^2
// + 3(p1 - p0) * t
// + p0
// = ((((p3 - p0 + 3(p1 - p2))) * t
// + 3(p0 - p1 + p2 - p1)) * t)
// + 3(p1 - p0)) * t)
// + p0
let p3_p0 = p3.sub(p0);
let p1_p0_3 = p1.sub(p0).mul(3.0);
let p1_p2_3 = p1.sub(p2).mul(3.0);
[p3_p0.add(&p1_p2_3), p1_p0_3.add(&p1_p2_3).neg(), p1_p0_3]
}
}

/// A curve composed of one or more concatenated
/// [cubic Bezier curves][CubicBezier].
/// [cubic Bézier curves][CubicBezier].
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct BezierSpline<T>(Vec<T>);

impl<T: Linear<Scalar = f32> + Copy> BezierSpline<T> {
/// Creates a bezier curve from the given control points. The number of
impl<T> BezierSpline<T>
where
T: Affine<Diff: Linear<Scalar = f32> + Clone> + Clone,
{
/// Creates a Bézier curve from the given control points. The number of
/// elements in `pts` must be 3n + 1 for some positive integer n.
///
/// Consecutive points in `pts` make up Bezier curves such that:
/// Consecutive points in `pts` make up Bézier curves such that:
/// * `pts[0..=3]` define the first curve,
/// * `pts[3..=6]` define the second curve,
///
Expand Down Expand Up @@ -153,7 +201,7 @@ impl<T: Linear<Scalar = f32> + Copy> BezierSpline<T> {
/// Returns the tangent of `self` at `t`.
///
/// Clamps `t` to the range [0, 1].
pub fn tangent(&self, t: f32) -> T {
pub fn tangent(&self, t: f32) -> T::Diff {
let (t, seg) = self.segment(t);
CubicBezier(seg).tangent(t)
}
Expand All @@ -164,7 +212,7 @@ impl<T: Linear<Scalar = f32> + Copy> BezierSpline<T> {
let seg = ((t * segs) as u32 as f32).min(segs - 1.0);
let t2 = t * segs - seg;
let idx = 3 * (seg as usize);
(t2, (self.0[idx..idx + 4]).try_into().unwrap())
(t2, array::from_fn(|k| self.0[idx + k].clone()))
}

/// Approximates `self` as a sequence of line segments.
Expand Down Expand Up @@ -201,11 +249,11 @@ impl<T: Linear<Scalar = f32> + Copy> BezierSpline<T> {
/// let approx = curve.approximate(|err| err.len_sqr() < 0.01*0.01);
/// assert_eq!(approx.len(), 17);
/// ```
pub fn approximate(&self, halt: impl Fn(&T) -> bool) -> Vec<T> {
pub fn approximate(&self, halt: impl Fn(&T::Diff) -> bool) -> Vec<T> {
let len = self.0.len();
let mut res = Vec::with_capacity(3 * len);
self.do_approx(0.0, 1.0, 10 + len.ilog2(), &halt, &mut res);
res.push(self.0[len - 1]);
res.push(self.0[len - 1].clone());
res
}

Expand All @@ -214,7 +262,7 @@ impl<T: Linear<Scalar = f32> + Copy> BezierSpline<T> {
a: f32,
b: f32,
max_dep: u32,
halt: &impl Fn(&T) -> bool,
halt: &impl Fn(&T::Diff) -> bool,
accum: &mut Vec<T>,
) {
let mid = a.lerp(&b, 0.5);
Expand Down Expand Up @@ -270,7 +318,7 @@ mod tests {
}

#[test]
fn bezier_spline_eval_eq_fasteval() {
fn bezier_spline_eval_eq_fast_eval() {
let b: CubicBezier<Vec2> = CubicBezier(
[[0.0, 0.0], [0.0, 2.0], [1.0, -1.0], [1.0, 1.0]].map(Vec2::from),
);
Expand Down
33 changes: 19 additions & 14 deletions demos/src/bin/bezier.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,14 @@ use std::ops::ControlFlow::Continue;
use re::prelude::*;

use re::math::{
point::Point2u,
point::{pt2, Point2, Point2u},
rand::{Distrib, Uniform, UnitDisk, Xorshift64},
spline::BezierSpline,
};

use re_front::{minifb::Window, Frame};
use re_front::{dims::SVGA_800_600, minifb::Window, Frame};

fn line([mut p0, mut p1]: [Vec2; 2]) -> impl Iterator<Item = Point2u> {
fn line([mut p0, mut p1]: [Point2; 2]) -> impl Iterator<Item = Point2u> {
if p0.y() > p1.y() {
swap(&mut p0, &mut p1);
}
Expand All @@ -24,12 +24,14 @@ fn line([mut p0, mut p1]: [Vec2; 2]) -> impl Iterator<Item = Point2u> {
(vec2(dx / dy, 1.0), dy)
};

p0.vary(step, Some(n as u32))
// TODO Fix once points are Vary
p0.to_vec()
.vary(step, Some(n as u32))
.map(|p| p.map(|c| c as u32).to_pt())
}

fn main() {
let dims @ (w, h) = (640, 480);
let dims @ (w, h) = SVGA_800_600;

let mut win = Window::builder()
.title("retrofire//bezier")
Expand All @@ -41,8 +43,11 @@ fn main() {
let pos = Uniform(vec2(0.0, 0.0)..vec2(w as f32, h as f32));
let vel = UnitDisk;

let (mut pts, mut deltas): (Vec<Vec2>, Vec<Vec2>) =
(pos, vel).samples(rng).take(4).unzip();
let (mut pts, mut deltas): (Vec<Point2>, Vec<Vec2>) = (pos, vel)
.samples(rng)
.take(4)
.map(|(p, v)| (p.to_pt(), v))
.unzip();

win.run(|Frame { dt, buf, .. }| {
let b = BezierSpline::new(&pts);
Expand All @@ -56,16 +61,16 @@ fn main() {
}
}

let max = vec2((w - 1) as f32, (h - 1) as f32);
let max = pt2((w - 1) as f32, (h - 1) as f32);
let secs = dt.as_secs_f32();
for (p, d) in pts.iter_mut().zip(deltas.iter_mut()) {
*p = (*p + *d * 200.0 * secs).clamp(&Vec2::zero(), &max);

if p[0] == 0.0 || p[0] == max.x() {
d[0] = -d[0];
*p = (*p + *d * 200.0 * secs).clamp(&pt2(0.0, 0.0), &max);
let [dx, dy] = &mut d.0;
if p.x() == 0.0 || p.x() == max.x() {
*dx = -*dx;
}
if p[1] == 0.0 || p[1] == max.y() {
d[1] = -d[1];
if p.y() == 0.0 || p.y() == max.y() {
*dy = -*dy;
}
}
Continue(())
Expand Down

0 comments on commit 8d9a3eb

Please sign in to comment.