-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
273 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# Post processing example scripts for distribute blockwise processing of peroxisome data. | ||
|
||
The goal of the script is to : | ||
- Gaussian filter the data | ||
- Threshold the distance data to get binary data | ||
- Apply watershed to get connected components | ||
- Find the connected components | ||
- Mask False Positives Mitochondria using Mitochondria data | ||
- Merge crops | ||
- Filter the connected components based on size |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
from dacapo.blockwise.scheduler import run_blockwise | ||
from funlib.geometry import Roi | ||
from postprocessing.postprocess_worker import open_ds | ||
import daisy | ||
import numpy as np | ||
|
||
# Make the ROIs | ||
path_to_worker = "postprocess_worker.py" | ||
num_workers = 16 | ||
overlap = 20 | ||
|
||
peroxi_container = "/path/to/peroxi_container.zarr" | ||
peroxi_dataset = "peroxisomes" | ||
mito_container = "/path/to/mito_container.zarr" | ||
mito_dataset = "mitochondria" | ||
threshold = "0.5" | ||
gaussian_kernel = 2 | ||
|
||
array_in = open_ds(peroxi_container, peroxi_dataset) | ||
total_roi = array_in.roi | ||
|
||
voxel_size = array_in.voxel_size | ||
block_size = np.array(array_in.data.chunks) * np.array(voxel_size) | ||
|
||
write_size = daisy.Coordinate(block_size) | ||
write_roi = daisy.Roi((0,) * len(write_size), write_size) | ||
|
||
context = np.array(voxel_size) * overlap | ||
|
||
read_roi = write_roi.grow(context, context) | ||
total_roi = array_in.roi.grow(context, context) | ||
|
||
|
||
# Run the script blockwise | ||
success = run_blockwise( | ||
worker_file=path_to_worker, | ||
total_roi=total_roi, | ||
read_roi=read_roi, | ||
write_roi=write_roi, | ||
num_workers=num_workers, | ||
) | ||
|
||
# Print the success | ||
if success: | ||
print("Success") | ||
else: | ||
print("Failure") | ||
|
||
# example run command: | ||
# bsub -n 4 python blockwise_postprocess_script.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
from typing import Any, Optional | ||
import sys | ||
from dacapo.compute_context import create_compute_context | ||
|
||
import daisy | ||
|
||
import click | ||
|
||
import logging | ||
|
||
import skimage.measure | ||
import skimage.filters | ||
import skimage.morphology | ||
from funlib.persistence import open_ds | ||
import numpy as np | ||
from skimage.segmentation import watershed | ||
from scipy import ndimage as ndi | ||
|
||
logger = logging.getLogger(__file__) | ||
|
||
read_write_conflict: bool = False | ||
fit: str = "valid" | ||
path = __file__ | ||
|
||
|
||
# OPTIONALLY DEFINE GLOBALS HERE | ||
|
||
|
||
@click.group() | ||
@click.option( | ||
"--log-level", | ||
type=click.Choice( | ||
["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], case_sensitive=False | ||
), | ||
default="INFO", | ||
) | ||
def cli(log_level): | ||
""" | ||
CLI for running the threshold worker. | ||
Args: | ||
log_level (str): The log level to use. | ||
""" | ||
logging.basicConfig(level=getattr(logging, log_level.upper())) | ||
|
||
|
||
@cli.command() | ||
@click.option( | ||
"-pc", | ||
"--peroxi-container", | ||
required=True, | ||
type=str, | ||
default=None, | ||
) | ||
@click.option( | ||
"-pd", | ||
"--peroxi-dataset", | ||
required=True, | ||
type=str, | ||
default=None, | ||
) | ||
@click.option( | ||
"-mc", | ||
"--mito-container", | ||
required=True, | ||
type=str, | ||
default=None, | ||
) | ||
@click.option( | ||
"-md", | ||
"--mito-dataset", | ||
required=True, | ||
type=str, | ||
default=None, | ||
) | ||
@click.option( | ||
"-t", | ||
"--threshold", | ||
required=False, | ||
type=float, | ||
default=0.5, | ||
) | ||
@click.option( | ||
"-g", | ||
"--gaussian-kernel", | ||
required=False, | ||
type=int, | ||
default=2, | ||
) | ||
def start_worker( | ||
peroxi_container, | ||
peroxi_dataset, | ||
mito_container, | ||
mito_dataset, | ||
threshold, | ||
gaussian_kernel, | ||
return_io_loop: Optional[bool] = False, | ||
): | ||
""" | ||
Start the worker. | ||
Args: | ||
peroxi_container (str): The container of the peroxisome predictions. | ||
peroxi_dataset (str): The dataset of the peroxisome predictions. | ||
mito_container (str): The container of the mitochondria predictions. | ||
mito_dataset (str): The dataset of the mitochondria predictions. | ||
threshold (float): The threshold to use for the peroxisome predictions. | ||
gaussian_kernel (int): The kernel size to use for the gaussian filter. | ||
returns: | ||
instance_peroxi (np.ndarray): The instance labels of the peroxisome predictions. | ||
""" | ||
# Do something with the argument | ||
# print(arg) | ||
|
||
def io_loop(): | ||
# wait for blocks to run pipeline | ||
client = daisy.Client() | ||
peroxi_ds = open_ds(peroxi_container, peroxi_dataset) | ||
mito_ds = open_ds(mito_container, mito_dataset) | ||
|
||
while True: | ||
print("getting block") | ||
with client.acquire_block() as block: | ||
if block is None: | ||
break | ||
|
||
# Do the blockwise process | ||
peroxi = peroxi_ds.to_ndarray(block.read_roi) | ||
mito = mito_ds.to_ndarray(block.read_roi) | ||
|
||
print(f"processing block: {block.id}, with read_roi: {block.read_roi}") | ||
peroxi = skimage.filters.gaussian(peroxi, gaussian_kernel) | ||
# threshold precictions | ||
binary_peroxi = peroxi > threshold | ||
# get instance labels | ||
markers, _ = ndi.label(binary_peroxi) | ||
# Apply Watershed | ||
ws_labels = watershed(-peroxi, markers, mask=peroxi) | ||
instance_peroxi = skimage.measure.label(ws_labels).astype(np.int64) | ||
# relabel background to 0 | ||
instance_peroxi[mito > 0] = 0 | ||
# make mask of unwanted object class overlaps | ||
return instance_peroxi.astype(np.uint64) | ||
|
||
if return_io_loop: | ||
return io_loop | ||
else: | ||
io_loop() | ||
|
||
|
||
def spawn_worker( | ||
peroxi_container, | ||
peroxi_dataset, | ||
mito_container, | ||
mito_dataset, | ||
threshold, | ||
gaussian_kernel, | ||
): | ||
""" | ||
Spawn a worker. | ||
Args: | ||
arg (Any): An example argument to use. | ||
Returns: | ||
Callable: The function to run the worker. | ||
""" | ||
compute_context = create_compute_context() | ||
if not compute_context.distribute_workers: | ||
return start_worker( | ||
peroxi_container=peroxi_container, | ||
peroxi_dataset=peroxi_dataset, | ||
mito_container=mito_container, | ||
mito_dataset=mito_dataset, | ||
threshold=threshold, | ||
gaussian_kernel=gaussian_kernel, | ||
return_io_loop=True, | ||
) | ||
|
||
# Make the command for the worker to run | ||
command = [ | ||
sys.executable, | ||
path, | ||
"start-worker", | ||
"--peroxi-container", | ||
peroxi_container, | ||
"--peroxi-dataset", | ||
peroxi_dataset, | ||
"--mito-container", | ||
mito_container, | ||
"--mito-dataset", | ||
mito_dataset, | ||
"--threshold", | ||
str(threshold), | ||
"--gaussian-kernel", | ||
str(gaussian_kernel), | ||
] | ||
|
||
def run_worker(): | ||
""" | ||
Run the worker in the given compute context. | ||
""" | ||
compute_context.execute(command) | ||
|
||
return run_worker | ||
|
||
|
||
if __name__ == "__main__": | ||
cli() |