Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sanjayfix2 #28811

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions ivy/functional/frontends/paddle/nn/functional/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,3 +195,28 @@ def zeropad2d(x, padding, data_format="NCHW", name=None):
else:
raise ValueError(f"Unknown data_format: {data_format}")
return ivy.pad(x, padding, mode="constant", constant_values=0.0)

@to_ivy_arrays_and_back
@with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle")
def bilinear(x1, x2, weight, bias=None, name=None):
x1_shape = ivy.shape(x1)
x2_shape = ivy.shape(x2)

if len(x1_shape) == 2:
x1 = ivy.expand_dims(x1, axis=1)
if len(x2_shape) == 2:
x2 = ivy.expand_dims(x2, axis=1)

output_shape = list(ivy.shape(x1))
output_shape[-1] = ivy.shape(weight)[0]

x1 = ivy.expand_dims(x1, axis=-1)
x2 = ivy.expand_dims(x2, axis=-2)

output = ivy.matmul(x1, ivy.matmul(weight, x2))
output = ivy.squeeze(output, axis=[-1, -2])

if bias is not None:
output = ivy.add(output, bias)

return ivy.reshape(output, output_shape)
38 changes: 38 additions & 0 deletions ivy/functional/frontends/paddle/nn/functional/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,3 +152,41 @@ def max_unpool1d(
padding=padding,
data_format=data_format,
)

@to_ivy_arrays_and_back
@with_supported_dtypes({"2.6.0 and below": ("float32", "float64")}, "paddle")
def avg_pool3d(
x,
kernel_size,
stride=None,
padding=0,
ceil_mode=False,
exclusive=True,
divisor_override=None,
data_format="NCDHW",
name=None,
):
if stride is None:
stride = kernel_size
kernel_size = _broadcast_pooling_helper(kernel_size, "3d", name="kernel_size")
padding = _broadcast_pooling_helper(padding, "3d", name="padding")

# Determine padding type
if all(
pad == ivy.ceil((kernel - 1) / 2) for kernel, pad in zip(kernel_size, padding)
):
padding = "SAME"
else:
padding = "VALID"

count_include_pad = not exclusive
return ivy.avg_pool3d(
x,
kernel_size,
stride,
padding,
data_format=data_format,
count_include_pad=count_include_pad,
ceil_mode=ceil_mode,
divisor_override=divisor_override,
)
Original file line number Diff line number Diff line change
Expand Up @@ -514,3 +514,59 @@ def test_paddle_zeropad2d(
padding=padding,
data_format=dataformat,
)

@handle_frontend_test(
fn_tree="paddle.nn.functional.common.bilinear",
dtype_and_inputs=helpers.dtype_and_values(
available_dtypes=helpers.get_dtypes("float"),
num_arrays=3,
shared_dtype=True,
min_value=-1.0,
max_value=1.0,
min_num_dims=2,
max_num_dims=3,
min_dim_size=2,
max_dim_size=5,
),
with_bias=st.booleans(),
)
def test_paddle_bilinear(
*,
dtype_and_inputs,
with_bias,
on_device,
fn_tree,
frontend,
test_flags,
backend_fw,
):
input_dtype, inputs = dtype_and_inputs
x1, x2, weight = inputs

if len(x1.shape) == 2:
output_size = weight.shape[0]
weight = ivy.reshape(weight, (output_size, x1.shape[1], x2.shape[1]))
else:
output_size = weight.shape[0]

if with_bias:
bias = ivy.random_uniform(
shape=(output_size,),
dtype=input_dtype[0],
device=on_device,
)
else:
bias = None

helpers.test_frontend_function(
input_dtypes=input_dtype,
backend_to_test=backend_fw,
frontend=frontend,
test_flags=test_flags,
fn_tree=fn_tree,
on_device=on_device,
x1=x1,
x2=x2,
weight=weight,
bias=bias,
)
Original file line number Diff line number Diff line change
Expand Up @@ -360,3 +360,61 @@ def test_paddle_max_unpool1d(
stride=stride,
padding=padding,
)

@handle_frontend_test(
fn_tree="paddle.nn.functional.avg_pool3d",
dtype_x_k_s=helpers.arrays_for_pooling(
min_dims=5,
max_dims=5,
min_side=2,
max_side=4,
),
ceil_mode=st.booleans(),
exclusive=st.booleans(),
data_format=st.sampled_from(["NCDHW", "NDHWC"]),
divisor_override=st.one_of(st.none(), st.integers(1, 4)),
)
def test_paddle_avg_pool3d(
dtype_x_k_s,
exclusive,
ceil_mode,
data_format,
divisor_override,
*,
test_flags,
backend_fw,
frontend,
fn_tree,
on_device,
):
input_dtype, x, kernel, stride, padding = dtype_x_k_s

if data_format == "NCDHW":
x[0] = x[0].reshape(
(x[0].shape[0], x[0].shape[4], x[0].shape[1], x[0].shape[2], x[0].shape[3])
)
if len(stride) == 1:
stride = (stride[0], stride[0], stride[0])
if padding == "SAME":
padding = test_pooling_functions.calculate_same_padding(
kernel, stride, x[0].shape[2:]
)
else:
padding = (0, 0, 0)

helpers.test_frontend_function(
input_dtypes=input_dtype,
test_flags=test_flags,
backend_to_test=backend_fw,
frontend=frontend,
fn_tree=fn_tree,
on_device=on_device,
x=x[0],
kernel_size=kernel,
stride=stride,
padding=padding,
ceil_mode=ceil_mode,
exclusive=exclusive,
divisor_override=divisor_override,
data_format=data_format,
)