Download MLexercises repository and build its docker image mlnotebook
.
Check mlnotebook
image
docker image ls mlnotebook
./build.bash
Check mlrobotgymenvs
image
docker image ls mlrobotgymenvs
./run.bash
Run inside the container
python run.py [options]
usage: run.py [-h] [-env ENV] [-steps STEPS] [-seed SEED] [--render] [--log]
optional arguments:
-h, --help show this help message and exit
-env ENV environment [r2,r3,r5] (default: r2)
-steps STEPS Execution steps (default: 10,000)
-seed SEED Random seed (default: 1000)
--render Enable rendering
--log Enable data log
Press 'ESC' in the GUI or CTRL-C in the terminal to exit the simulation
Example:
python run.py -env r2 -seed 1000 -steps 100000 --render
Environments:
r2: 2D robot with 2 joints
r3: 2D robot with 3 joints
r5: 3D robot with 5 joints
Log data
python run.py -env r2 -seed 1000 -steps 100000 --log > logfile.csv
Run the server from the container
jupyter notebook --ip=0.0.0.0 --no-browser --NotebookApp.allow_remote_access=True --allow-root --NotebookApp.allow_origin='https://colab.research.google.com' --port=8888 --NotebookApp.port_retries=0
Npte: in same cases, the connection gets stuck. Just retry!