Skip to content

Commit

Permalink
Cellatlas (#5)
Browse files Browse the repository at this point in the history
* refactor get cache function to return higher level instead of `flatmaps` folder

* wip plenty of stuff

* make sure slice dimension are consistent regardless of the volume memory layout

* add the agea atlas backend with geometry

* bugfixes

* windows CI tests require memmap to be closed to remove tempdir

* review comments modifications
  • Loading branch information
oliche authored Jan 23, 2024
1 parent 8938ba1 commit b874dea
Show file tree
Hide file tree
Showing 19 changed files with 523 additions and 131 deletions.
2 changes: 1 addition & 1 deletion .flake8
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[flake8]
max-line-length = 130
ignore = W504, W503, E266
ignore = W504, W503, E266, D, BLK
exclude =
.git,
__pycache__,
Expand Down
10 changes: 10 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,13 @@
## [1.0.0]

### Added
- `iblatlas.genomics` module for working with genomics data from Allen contains
- the Allen gene expression atlas in the `iblatlas.genomics.agea` module
- the Allen cell types atlas in the `iblatlas.genomics.merfish` module
### Modified
- slices of the atlas are now always returned with consistent sizes regardless of the volume layout on disk
- atlases now can have an extra dimension in the image volume, to allow for multiple layers

## [0.3.0]
### Modified
- Insertion._get_surface_intersection: can return None if and when mode is not set to raise and insertion is not intersecting with any surface
Expand Down
22 changes: 13 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,20 +1,24 @@
# iblatlas
This repository contains tools to manipulate 3D representations of the mouse brain anatomy for electrophysiolgy experiments.
The tools are mainly using the the Allen Brain Atlas although some other atlases can be used and are written in Python.
Tools to manipulate hierarchical 3D representations of the mouse brain anatomy for electrophysiolgy experiments.
The tools are mainly using the the Allen CCF although some other atlases can be used.

One of the requirment of this repository is to use minimal requirements, based of standard matplotlib, numpy and scipy libraries, and excludes visualisation tool.
**This repository uses minimal requirements, based of standard `matplotlib`, `numpy` and `scipy` libraries, to the exclusion
of more complex visualization tools such as `pyqt`.**

The documentation can be found here: https://int-brain-lab.github.io/iblenv/notebooks_external/atlas_working_with_ibllib_atlas.html
## Documentation
[Full package documentation](https://int-brain-lab.github.io/iblenv/_autosummary/iblatlas.html#module-iblatlas)

[Notebooks and examples](https://int-brain-lab.github.io/iblenv/notebooks_external/atlas_working_with_ibllib_atlas.html)

## Installation
`pip install iblatlas`


## Contributing
Changes are merged by pull requests.
Release checklist:
- [ ] Update version in `iblatlas/__init__.py`
- [ ] Update `CHANGELOG.md`
- [ ] Create a pull request to the `main` branch on GitHub
- [x] Update version in `iblatlas/__init__.py`
- [x] Update `CHANGELOG.md`
- [x] Create a pull request to the `main` branch on GitHub
- [x] Once the PR is merged, create a new tag and push the tag

Once merged the package is uploaded to PyPI using GitHub Actions.
Once a tag is pushed on main the package is uploaded to PyPI using GitHub Actions.
14 changes: 14 additions & 0 deletions examples/atlas_genomics_load_allen_gene_expression_atlas.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import matplotlib.pyplot as plt
from iblatlas.genomics import agea

df_genes, gene_expression_volumes, atlas_agea = agea.load()

igenes = (0,)
fig, axs = plt.subplots(3, 2, sharex=True, sharey=True)
atlas_agea.plot_cslice(0, ax=axs[0, 0])
atlas_agea.plot_cslice(0, ax=axs[1, 0], volume='annotation')
atlas_agea.plot_cslice(0, ax=axs[2, 0], volume=gene_expression_volumes[igenes[0]], cmap='viridis')
atlas_agea.plot_sslice(0, ax=axs[0, 1])
atlas_agea.plot_sslice(0, ax=axs[1, 1], volume='annotation')
atlas_agea.plot_sslice(0, ax=axs[2, 1], volume=gene_expression_volumes[igenes[0]], cmap='viridis')
fig.tight_layout()
28 changes: 14 additions & 14 deletions iblatlas/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
For examples and tutorials on using the IBL atlas package, see
https://docs.internationalbrainlab.org/atlas_examples.html
.. TODO Explain differences between this package and the Allen SDK.
Much of this was adapted from the `cortexlab allenCCF repository <https://github.com/cortex-lab/allenCCF>`_.
Terminology
-----------
Expand Down Expand Up @@ -61,11 +60,15 @@
bregma and lambda are at the same DV height) [6]_, however this is not currently accounted for.
Mappings
--------
In addition to the atlases there are also multiple brain region mappings that serve one of two purposes: 1. control the
granularity particular brain regions; 2. support differing anatomical sub-devisions or nomenclature. The two Allen atlas mappings
below were created somewhat arbirarily by Nick Steinmetz to aid in analysis:
Brain Regions Mappings
----------------------
The Allen CCF ontology regroups brain regions in a hierarchical manner, with up to 9 levels of parcellation. The
labels volumes provided by the Allen Institute are at the finest level of parcellation, ie. leaf nodes.
However it is often useful to regroup regions at higher levels of the hierarchy for aggregation purposes. The mappings
represent the correspondence between the leaf nodes and their grouping for given analysis purposes. This is useful for:
1. control the granularity particular brain regions;
2. support differing anatomical sub-devisions or nomenclature.
The two Allen atlas mappings below were created by Nick Steinmetz to aid in neural analysis:
1. Beryl - brain atlas annotations without layer sub-divisions or certain ganglial/nucleus sub-devisisions (e.g. the core/shell
sub-division of the lateral geniculate nucleus). Fibre tracts, pia, etc. are also absent. The choice of which areas to combine
Expand All @@ -90,7 +93,7 @@
Notes
-----
The Allen atlas and the CCF annotations have different release dates and versions [10]_. The annotations used by IBL are the 2017
version.
version (CCFv2).
The IBL uses the following conventions:
Expand All @@ -107,7 +110,7 @@
Examples
--------
Below are some breif API examples. For in depth tutorials on using the IBL atlas package, see
Below are some brief API examples. For in depth tutorials on using the IBL atlas package, see
https://docs.internationalbrainlab.org/atlas_examples.html.
Find bregma position in indices * resolution in um
Expand Down Expand Up @@ -138,7 +141,7 @@
`Mappings`_.
* **swanson_regions.npy** - A 1D array of length 323 containing the Allen CCF brain region IDs
* **mappings.pqt** - A table of mappings. Each column defines a mapping, with the '-lr' suffix indicating a lateralized version.
The rows contain the correspondence of each mapping to the int64 index of the lateralized Allen structure tree. The table is
The rows contain the correspondence of each mapping to the int64 index of the lateralized Allen structure tree. The table is
generated by iblatlas.regions.BrainRegions._compute_mappings.
Remote files
Expand All @@ -159,8 +162,6 @@
region were then simplified using the `Ramer Douglas Peucker algorithm <https://rdp.readthedocs.io/en/latest/>`_
* **swanson2allen.npz** - TODO Document who made this, its contents, purpose and data type
* **<flatmap_name>_<res_um>.nrrd** - TODO Document who made this, its contents, purpose and data type
* **gene-expression.pqt** - TODO Document who made this, its contents, purpose and data type
* **gene-expression.bin** - TODO Document who made this, its contents, purpose and data type.
.. [*] The annotation and average template volumes were created from the images provided in Supplemtary Data 4 of Chon et al. [3]_
and stitched together as a single volume using SimpleITK.
Expand Down Expand Up @@ -192,6 +193,5 @@
ontology and flatmaps. J Comp Neurol. [doi 10.1002/cne.24381]
.. [10] Allen Mouse Common Coordinate Framework Technical White Paper (October 2017 v3)
http://help.brain-map.org/download/attachments/8323525/Mouse_Common_Coordinate_Framework.pdf
"""
__version__ = '0.3.0'
__version__ = '0.4.0'
99 changes: 53 additions & 46 deletions iblatlas/atlas.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,19 +148,6 @@ def nxyz(self):
"""numpy.array: Coordinates of the element volume[0, 0, 0] in the coordinate space."""
return np.array([self.nx, self.ny, self.nz])

"""Methods ratios to indices"""
def r2ix(self, r):
# FIXME Document
return int((self.nx - 1) * r)

def r2iy(self, r):
# FIXME Document
return int((self.nz - 1) * r)

def r2iz(self, r):
# FIXME Document
return int((self.nz - 1) * r)

"""Methods distance to indices"""
@staticmethod
def _round(i, round=True):
Expand Down Expand Up @@ -459,10 +446,13 @@ class BrainAtlas:
yet this class can be used for other atlases arises.
"""

"""numpy.array: An image volume."""
"""numpy.array: A 3D image volume."""
image = None
"""numpy.array: An annotation label volume."""
"""numpy.array: A 3D annotation label volume."""
label = None
"""numpy.array: One or several optional data volumes, the 3 last dimensions should match
the image and the label volumes dimensions"""
volumes = None

def __init__(self, image, label, dxyz, regions, iorigin=[0, 0, 0],
dims2xyz=[0, 1, 2], xyz2dims=[0, 1, 2]):
Expand All @@ -478,8 +468,8 @@ def __init__(self, image, label, dxyz, regions, iorigin=[0, 0, 0],
self.image = image
self.label = label
self.regions = regions
self.dims2xyz = dims2xyz
self.xyz2dims = xyz2dims
self.dims2xyz = np.array(dims2xyz)
self.xyz2dims = np.array(xyz2dims)
assert np.all(self.dims2xyz[self.xyz2dims] == np.array([0, 1, 2]))
assert np.all(self.xyz2dims[self.dims2xyz] == np.array([0, 1, 2]))
# create the coordinate transform object that maps volume indices to real world coordinates
Expand All @@ -492,8 +482,13 @@ def __init__(self, image, label, dxyz, regions, iorigin=[0, 0, 0],

@staticmethod
def _get_cache_dir():
"""
./histology/ATLAS/Needles/Allen
Where . is the main ONE cache directory
:return: pathlib.Path
"""
par = one.params.get(silent=True)
path_atlas = Path(par.CACHE_DIR).joinpath('histology', 'ATLAS', 'Needles', 'Allen', 'flatmaps')
path_atlas = Path(par.CACHE_DIR).joinpath('histology', 'ATLAS', 'Needles', 'Allen')
return path_atlas

def mask(self):
Expand Down Expand Up @@ -729,7 +724,7 @@ def _plot_slice(im, extent, ax=None, cmap=None, volume=None, **kwargs):
cmap : str, matplotlib.colors.Colormap
The Colormap instance or registered colormap name used to map scalar data to colors.
Defaults to 'bone'.
volume : str
volume : str | np.array
If 'boundary', assumes image is an outline of boundaries between all regions.
FIXME How does this affect the plot?
**kwargs
Expand All @@ -746,10 +741,11 @@ def _plot_slice(im, extent, ax=None, cmap=None, volume=None, **kwargs):
if not cmap:
cmap = plt.get_cmap('bone')

if volume == 'boundary':
imb = np.zeros((*im.shape[:2], 4), dtype=np.uint8)
imb[im == 1] = np.array([0, 0, 0, 255])
im = imb
if isinstance(volume, str):
if volume == 'boundary':
imb = np.zeros((*im.shape[:2], 4), dtype=np.uint8)
imb[im == 1] = np.array([0, 0, 0, 255])
im = imb

ax.imshow(im, extent=extent, cmap=cmap, **kwargs)
return ax
Expand Down Expand Up @@ -795,7 +791,10 @@ def slice(self, coordinate, axis, volume='image', mode='raise', region_values=No
- if volume='volume', region_values must have shape ba.image.shape
- if volume='value', region_values must have shape ba.regions.id
:param mapping: mapping to use. Options can be found using ba.regions.mappings.keys()
:return: 2d array or 3d RGB numpy int8 array
:return: 2d array or 3d RGB numpy int8 array of dimensions:
- 0: nap x ndv (sagittal slice)
- 1: nml x ndv (coronal slice)
- 2: nap x nml (horizontal slice)
"""
if axis == 0:
index = self.bc.x2i(np.array(coordinate), mode=mode)
Expand All @@ -804,43 +803,53 @@ def slice(self, coordinate, axis, volume='image', mode='raise', region_values=No
elif axis == 2:
index = self.bc.z2i(np.array(coordinate), mode=mode)

# np.take is 50 thousand times slower than straight slicing !
def _take(vol, ind, axis):
"""
This is a 2 steps process to get the slice along the correct axis
1) slice the volume according to the mapped axis corresponding to the sclice
we do this because np.take is 50 thousand times slower than straight slicing !
2) reshape the output array according to the slice specifications
"""
volume_axis = self.xyz2dims[axis]
if mode == 'clip':
ind = np.minimum(np.maximum(ind, 0), vol.shape[axis] - 1)
if axis == 0:
return vol[ind, :, :]
elif axis == 1:
return vol[:, ind, :]
elif axis == 2:
return vol[:, :, ind]
ind = np.minimum(np.maximum(ind, 0), vol.shape[volume_axis] - 1)
if volume_axis == 0:
slic = vol[ind, :, :]
elif volume_axis == 1:
slic = vol[:, ind, :]
elif volume_axis == 2:
slic = vol[:, :, ind]
output_sizes = [[1, 2], [0, 2], [1, 0]] # we expect those sizes where index is the axis
if np.diff(self.xyz2dims[output_sizes[axis]])[0] < 0:
slic = slic.transpose().copy()
return slic

def _take_remap(vol, ind, axis, mapping):
# For the labels, remap the regions indices according to the mapping
return self._get_mapping(mapping=mapping)[_take(vol, ind, axis)]

if isinstance(volume, np.ndarray):
return _take(volume, index, axis=self.xyz2dims[axis])
return _take(volume, index, axis=axis)
elif volume in 'annotation':
iregion = _take_remap(self.label, index, self.xyz2dims[axis], mapping)
iregion = _take_remap(self.label, index, axis=axis, mapping=mapping)
return self._label2rgb(iregion)
elif volume == 'image':
return _take(self.image, index, axis=self.xyz2dims[axis])
return _take(self.image, index, axis=axis)
elif volume == 'value':
return region_values[_take_remap(self.label, index, self.xyz2dims[axis], mapping)]
return region_values[_take_remap(self.label, index, axis, mapping)]
elif volume == 'image':
return _take(self.image, index, axis=self.xyz2dims[axis])
return _take(self.image, index, axis=axis)
elif volume in ['surface', 'edges']:
self.compute_surface()
return _take(self.surface, index, axis=self.xyz2dims[axis])
return _take(self.surface, index, axis=axis)
elif volume == 'boundary':
iregion = _take_remap(self.label, index, self.xyz2dims[axis], mapping)
iregion = _take_remap(self.label, index, axis, mapping)
return self.compute_boundaries(iregion)

elif volume == 'volume':
if bc is not None:
index = bc.xyz2i(np.array([coordinate] * 3))[axis]
return _take(region_values, index, axis=self.xyz2dims[axis])
return _take(region_values, index, axis=axis)

def compute_boundaries(self, values):
"""
Expand Down Expand Up @@ -896,7 +905,6 @@ def plot_cslice(self, ap_coordinate, volume='image', mapping=None, region_values
:param **kwargs: matplotlib.pyplot.imshow kwarg arguments
:return: matplotlib ax object
"""

cslice = self.slice(ap_coordinate, axis=1, volume=volume, mapping=mapping, region_values=region_values)
return self._plot_slice(np.moveaxis(cslice, 0, 1), extent=self.extent(axis=1), volume=volume, **kwargs)

Expand Down Expand Up @@ -964,14 +972,11 @@ def plot_top(self, volume='annotation', mapping=None, region_values=None, ax=Non
:param kwargs:
:return:
"""

self.compute_surface()
ix, iy = np.meshgrid(np.arange(self.bc.nx), np.arange(self.bc.ny))
iz = self.bc.z2i(self.top)
inds = self._lookup_inds(np.stack((ix, iy, iz), axis=-1))

regions = self._get_mapping(mapping=mapping)[self.label.flat[inds]]

if volume == 'annotation':
im = self._label2rgb(regions)
elif volume == 'image':
Expand Down Expand Up @@ -1290,8 +1295,10 @@ class AllenAtlas(BrainAtlas):

"""numpy.array: A diffusion weighted imaging (DWI) image volume.
The Allen atlas DWI average template volume has with the shape (ap, ml, dv) and contains uint16
values. FIXME What do the values represent?
This average template brain was created from images of 1,675 young adult C57BL/6J mouse brains
acquired using serial two-photon tomography.
This volume has a C-ordered shape of (ap, ml, dv) and contains uint16
values.
"""
image = None

Expand Down
Loading

0 comments on commit b874dea

Please sign in to comment.