Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor PKCT01 #104

Merged
merged 17 commits into from
Sep 8, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 80 additions & 42 deletions book/tables/pharmacokinetic/pkct01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -26,78 +26,116 @@ adpc_1 <- adpc %>%
AVALCAT1 = as.factor(AVALCAT1)
) %>%
filter(ACTARM == "A: Drug X", PARAM == "Plasma Drug X") %>%
mutate(ACTARM = factor(ACTARM, levels = c("A: Drug X"))) %>%
select(NFRLT, ACTARM, VISIT, AVAL, PARAM, AVALCAT1)
select(NFRLT, ACTARM, VISIT, AVAL, PARAM, AVALCAT1) %>%
var_relabel(NFRLT = "Nominal Time from First Dose (hr)")
Melkiades marked this conversation as resolved.
Show resolved Hide resolved

# Helper function
threesigfmt <- function(x, ...) {
as.character(signif(x, 3))
}
```

## Standard Table (Stats in Columns)

```{r variant1, test = list(result_v1 = "result")}
# Row structure
l_rows <- basic_table() %>%
lyt_rows <- basic_table() %>%
split_rows_by(
var = "ACTARM",
split_label = "Cohort/Treatment",
split_fun = drop_split_levels,
split_label = "Treatment Group",
label_pos = "topleft"
) %>%
split_rows_by(
var = "VISIT",
split_fun = drop_split_levels,
split_label = "Visit",
label_pos = "topleft"
) %>%
split_rows_by(
var = "NFRLT",
split_label = "Norminal Time from First Dose",
split_fun = drop_split_levels,
split_label = obj_label(adpc_1$NFRLT),
label_pos = "topleft",
child_labels = "hidden"
)
```

# Column results for numeric values
lyt <- l_rows %>%
## Standard Table (Stats in Columns)

```{r variant1, test = list(result_v1 = "result")}
lyt <- lyt_rows %>%
analyze_vars_in_cols(
vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)),
.stats = c(
"n", "n_blq", "mean", "sd", "cv",
"geom_mean", "geom_cv", # "geom_mean_ci",
"median", "min", "max"
),
.stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"),
.formats = c(
n = "xx.",
n_blq = "xx.",
mean = threesigfmt,
sd = threesigfmt,
cv = "xx.x",
median = threesigfmt,
geom_mean = threesigfmt,
geom_cv = "xx.x",
min = threesigfmt,
max = threesigfmt
n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3),
geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3)
),
.labels = c(
n = "n",
n_blq = "Number\nof\nLTRs/BLQs",
mean = "Mean",
sd = "SD",
cv = "CV (%) Mean",
geom_mean = "Geometric Mean",
geom_cv = "CV % Geometric Mean",
median = "Median",
min = "Minimum",
max = "Maximum"
n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean",
geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum"
),
na_level = "NE"
na_level = "NE",
.aligns = "decimal"
)

result <- build_table(lyt, df = adpc_1) %>% prune_table()

# Decorating
main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable"
subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM)))
main_footer(result) <- "NE: Not Estimable"

result
```

## Table Implementing 1/3 Imputation Rule

```{r variant2, test = list(result_v2 = "result")}
lyt <- lyt_rows %>%
analyze_vars_in_cols(
vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)),
.stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"),
.formats = c(
n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3),
geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3)
),
.labels = c(
n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean",
geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum"
),
imp_rule = "1/3",
.aligns = "decimal"
)

result <- build_table(lyt, df = adpc_1) %>% prune_table()

# Decorating
main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable"
subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM)))
main_footer(result) <- c("NE: Not Estimable", "ND: Not Derived")

result
```

## Table Implementing 1/2 Imputation Rule

```{r variant3, test = list(result_v3 = "result")}
lyt <- lyt_rows %>%
analyze_vars_in_cols(
vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)),
.stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"),
.formats = c(
n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3),
geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3)
),
.labels = c(
n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean",
geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum"
),
imp_rule = "1/2",
.aligns = "decimal"
)

result <- build_table(lyt, df = adpc_1) %>% prune_table()

# Decorate table
main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable"
subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM)))
main_footer(result) <- "ND: Not Derived"

result
```

Expand Down
Loading