Skip to content

Commit

Permalink
Update
Browse files Browse the repository at this point in the history
  • Loading branch information
walkowif committed Sep 18, 2023
1 parent 8cd6faf commit f21a939
Showing 1 changed file with 0 additions and 135 deletions.
135 changes: 0 additions & 135 deletions book/tables/pharmacokinetic/pkct01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -10,141 +10,6 @@ subtitle: Summary Concentration Table
::: panel-tabset
## Data Setup

```{r setup, message=FALSE}
#| code-fold: show
# library(scda)
# library(dplyr)
# library(tern)
# adsl <- synthetic_cdisc_dataset("latest", "adsl") %>%
# filter(ACTARM == "A: Drug X")
# adpc <- synthetic_cdisc_dataset("latest", "adpc") %>%
# filter(ACTARM == "A: Drug X", PARAM == "Plasma Drug X")
# Setting up the data
# adpc_1 <- adpc %>%
# mutate(
# NFRLT = as.factor(NFRLT),
# AVALCAT1 = as.factor(AVALCAT1)
# ) %>%
# select(NFRLT, ACTARM, VISIT, AVAL, PARAM, AVALCAT1) %>%
# var_relabel(NFRLT = "Nominal Time from First Dose (hr)")
# Row structure
# lyt_rows <- basic_table() %>%
# split_rows_by(
# var = "ACTARM",
# split_fun = drop_split_levels,
# split_label = "Treatment Group",
# label_pos = "topleft"
# ) %>%
# add_rowcounts(alt_counts = TRUE) %>%
# split_rows_by(
# var = "VISIT",
# split_fun = drop_split_levels,
# split_label = "Visit",
# label_pos = "topleft"
# ) %>%
# split_rows_by(
# var = "NFRLT",
# split_fun = drop_split_levels,
# split_label = obj_label(adpc_1$NFRLT),
# label_pos = "topleft",
# child_labels = "hidden"
# )
```

## Standard Table (Stats in Columns)

```{r variant1, test = list(result_v1 = "result")}
# lyt <- lyt_rows %>%
# analyze_vars_in_cols(
# vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)),
# .stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"),
# .formats = c(
# n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3),
# geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3)
# ),
# .labels = c(
# n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean",
# geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum"
# ),
# cache = TRUE,
# na_level = "NE",
# .aligns = "decimal"
# )
# result <- build_table(lyt, df = adpc_1, alt_counts_df = adsl) %>% prune_table()
# Decorating
# main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable"
# subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM)))
# main_footer(result) <- "NE: Not Estimable"
# result
```

## Table Implementing 1/3 Imputation Rule

```{r variant2, test = list(result_v2 = "result")}
# lyt <- lyt_rows %>%
# analyze_vars_in_cols(
# vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)),
# .stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"),
# .formats = c(
# n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3),
# geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3)
# ),
# .labels = c(
# n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean",
# geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum"
# ),
# cache = TRUE,
# imp_rule = "1/3",
# .aligns = "decimal"
# )
# result <- build_table(lyt, df = adpc_1, alt_counts_df = adsl) %>% prune_table()
# Decorating
# main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable"
# subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM)))
# main_footer(result) <- c("NE: Not Estimable", "ND: Not Derived")
# result
```

## Table Implementing 1/2 Imputation Rule

```{r variant3, test = list(result_v3 = "result")}
# lyt <- lyt_rows %>%
# analyze_vars_in_cols(
# vars = c("AVAL", "AVALCAT1", rep("AVAL", 8)),
# .stats = c("n", "n_blq", "mean", "sd", "cv", "geom_mean", "geom_cv", "median", "min", "max"),
# .formats = c(
# n = "xx.", n_blq = "xx.", mean = format_sigfig(3), sd = format_sigfig(3), cv = "xx.x", median = format_sigfig(3),
# geom_mean = format_sigfig(3), geom_cv = "xx.x", min = format_sigfig(3), max = format_sigfig(3)
# ),
# .labels = c(
# n = "n", n_blq = "Number\nof\nLTRs/BLQs", mean = "Mean", sd = "SD", cv = "CV (%) Mean",
# geom_mean = "Geometric Mean", geom_cv = "CV % Geometric Mean", median = "Median", min = "Minimum", max = "Maximum"
# ),
# cache = TRUE,
# imp_rule = "1/2",
# .aligns = "decimal"
# )
# result <- build_table(lyt, df = adpc_1, alt_counts_df = adsl) %>% prune_table()
# Decorate table
# main_title(result) <- "Summary of PK Concentrations by Nominal Time and Treatment: PK Evaluable"
# subtitles(result) <- c("Protocol: xxxxx", paste("Analyte: ", unique(adpc_1$PARAM)), paste("Treatment:", unique(adpc_1$ACTARM)))
# main_footer(result) <- "ND: Not Derived"
# result
```


## `teal` App

Expand Down

0 comments on commit f21a939

Please sign in to comment.