Skip to content

Commit

Permalink
replace usage of scda and scda.2022 with random.cdisc.data (#250)
Browse files Browse the repository at this point in the history
closes #242

similar to [this
PR](https://github.com/insightsengineering/biomarker-catalog/pull/64/files#diff-9cc358405149db607ff830a16f0b4b21f7366e3c99ec00d52800acebe21b231c)

---------

Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
  • Loading branch information
ayogasekaram and github-actions[bot] authored May 15, 2024
1 parent cd2b70d commit 7a3f457
Show file tree
Hide file tree
Showing 137 changed files with 383 additions and 827 deletions.
13 changes: 4 additions & 9 deletions book/graphs/efficacy/fstg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -13,16 +13,14 @@ subtitle: Subgroup Analysis of Best Overall Response
```{r setup, message = FALSE}
#| code-fold: show
library(scda)
library(scda.2022)
library(dplyr)
library(tern)
library(nestcolor)
adsl_f <- synthetic_cdisc_dataset("latest", "adsl") %>%
adsl_f <- random.cdisc.data::cadsl %>%
select(STUDYID, USUBJID, ARMCD, ARM, SEX, BMRKR2, STRATA1, STRATA2)
adrs_f <- synthetic_cdisc_dataset("latest", "adrs") %>%
adrs_f <- random.cdisc.data::cadrs %>%
filter(PARAMCD == "INVET") %>%
select(STUDYID, USUBJID, PARAMCD, AVISIT, AVALC)
Expand Down Expand Up @@ -244,11 +242,8 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADRS <- synthetic_cdisc_dataset("latest", "adrs")
ADSL <- random.cdisc.data::cadsl
ADRS <- random.cdisc.data::cadrs
})
datanames <- c("ADSL", "ADRS")
datanames(data) <- datanames
Expand Down
10 changes: 3 additions & 7 deletions book/graphs/efficacy/fstg02.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,6 @@ library(tern)
library(dplyr)
library(forcats)
library(nestcolor)
library(scda)
library(scda.2022)
preprocess_adtte <- function(adtte) {
# Save variable labels before data processing steps.
Expand Down Expand Up @@ -51,7 +49,7 @@ preprocess_adtte <- function(adtte) {
adtte
}
anl <- synthetic_cdisc_dataset("latest", "adtte") %>%
anl <- random.cdisc.data::cadtte %>%
preprocess_adtte()
```

Expand Down Expand Up @@ -212,19 +210,17 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
library(dplyr)
library(forcats)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADSL <- random.cdisc.data::cadsl
ADSL <- ADSL %>%
filter(ARM %in% c("B: Placebo", "A: Drug X")) %>%
mutate(ARM = droplevels(fct_relevel(ARM, "B: Placebo"))) %>%
mutate(ARMCD = droplevels(fct_relevel(ARMCD, "ARM B")))
ADSL$RACE <- droplevels(ADSL$RACE)
ADTTE <- synthetic_cdisc_dataset("latest", "adtte")
ADTTE <- random.cdisc.data::cadtte
adtte_labels <- col_labels(ADTTE)
ADTTE <- ADTTE %>%
Expand Down
11 changes: 3 additions & 8 deletions book/graphs/efficacy/kmg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,10 @@ subtitle: Kaplan-Meier Plot
#| code-fold: show
library(tern)
library(scda)
library(scda.2022)
library(dplyr)
library(nestcolor)
adtte <- synthetic_cdisc_dataset("latest", "adtte")
adtte <- random.cdisc.data::cadtte
anl <- adtte %>%
dplyr::filter(PARAMCD == "OS") %>%
dplyr::mutate(is_event = CNSR == 0)
Expand Down Expand Up @@ -183,11 +181,8 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADTTE <- synthetic_cdisc_dataset("latest", "adtte")
ADSL <- random.cdisc.data::cadsl
ADTTE <- random.cdisc.data::cadtte
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
Expand Down
12 changes: 4 additions & 8 deletions book/graphs/efficacy/mmrmg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,10 @@ Given an MMRM fitted with `s_mmrm`, `g_mmrm_lsmeans` displays for each visit the
library(dplyr)
library(tern.mmrm)
library(scda)
library(scda.2022)
library(nestcolor)
adsl <- synthetic_cdisc_dataset("latest", "adsl")
adqs <- synthetic_cdisc_dataset("latest", "adqs")
adsl <- random.cdisc.data::cadsl
adqs <- random.cdisc.data::cadqs
adqs_f <- adqs %>%
dplyr::filter(PARAMCD == "FKSI-FWB" & !AVISIT %in% c("BASELINE")) %>%
Expand Down Expand Up @@ -124,12 +122,10 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
library(dplyr)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADQS <- synthetic_cdisc_dataset("latest", "adqs") %>%
ADSL <- random.cdisc.data::cadsl
ADQS <- random.cdisc.data::cadqs %>%
filter(ABLFL != "Y" & ABLFL2 != "Y") %>%
filter(AVISIT %in% c("WEEK 1 DAY 8", "WEEK 2 DAY 15", "WEEK 3 DAY 22")) %>%
mutate(
Expand Down
6 changes: 2 additions & 4 deletions book/graphs/efficacy/mmrmg02.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,12 @@ subtitle: Forest Plot for Mixed-Effect Model Repeated Measures
```{r setup, message = FALSE}
#| code-fold: show
library(scda)
library(scda.2022)
library(dplyr)
library(tern.mmrm)
library(nestcolor)
adsl <- synthetic_cdisc_dataset("latest", "adsl")
adqs <- synthetic_cdisc_dataset("latest", "adqs")
adsl <- random.cdisc.data::cadsl
adqs <- random.cdisc.data::cadqs
adqs_f <- adqs %>%
dplyr::filter(PARAMCD == "FKSI-FWB" & !AVISIT %in% c("BASELINE")) %>%
Expand Down
9 changes: 3 additions & 6 deletions book/graphs/other/brg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,11 @@ subtitle: Bar Chart
library(binom)
library(dplyr)
library(ggplot2)
library(scda)
library(scda.2022)
library(tidyr)
library(tern)
library(nestcolor)
adsl <- synthetic_cdisc_dataset("latest", "adsl")
adsl <- random.cdisc.data::cadsl
# filtered population
patpop_df <- adsl %>%
Expand All @@ -31,12 +29,12 @@ patpop_df <- adsl %>%
patpop <- setNames(patpop_df$patpop, patpop_df$STUDYID)
denom <- patpop_df$patpop
adae <- synthetic_cdisc_dataset("latest", "adae") %>%
adae <- random.cdisc.data::cadae %>%
mutate(AETOXGRC = as.character(AETOXGR))
attributes(adae$AETOXGRC)$label <- "Analysis Toxicity Grade (C)"
vl_ae <- var_labels(adae)
adlb <- synthetic_cdisc_dataset("latest", "adlb")
adlb <- random.cdisc.data::cadlb
vl_lb <- var_labels(adlb)
```

Expand Down Expand Up @@ -153,7 +151,6 @@ plot
## {{< fa regular file-lines sm fw >}} Preview

<!-- skip strict because of partial arg match in `bionom` https://github.com/cran/binom/blob/master/R/binom.confint.R#L31 -->

```{r plot5, test = list(plot_v5 = "plot"), opts.label = "skip_test_strict"}
anl <- adlb %>%
filter(PARAMCD == "ALT" & ANRIND == "HIGH")
Expand Down
14 changes: 5 additions & 9 deletions book/graphs/other/bwg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,11 @@ subtitle: Box Plot
#| code-fold: show
# generic code for all plots
library(scda)
library(scda.2022)
library(dplyr)
library(ggplot2)
library(nestcolor)
adlb <- synthetic_cdisc_dataset("latest", "adlb")
adlb <- random.cdisc.data::cadlb
adlb <- adlb %>% filter(PARAMCD == "ALT" & AVISIT == "WEEK 2 DAY 15")
# Definition of boxplot boundaries and whiskers
Expand Down Expand Up @@ -244,8 +242,8 @@ plot

<!-- skip strict because of https://github.com/r-lib/gtable/pull/94 -->
```{r plot6, test = list(plot_v6 = "plot"), opts.label = "skip_test_strict"}
adsl <- synthetic_cdisc_dataset("latest", "adsl")
adlb <- synthetic_cdisc_dataset("latest", "adlb")
adsl <- random.cdisc.data::cadsl
adlb <- random.cdisc.data::cadlb
adlb_v <- adlb %>%
filter(PARAMCD == "ALT" & AVISIT %in% c("WEEK 1 DAY 8", "WEEK 2 DAY 15", "WEEK 3 DAY 22", "WEEK 4 DAY 29"))
Expand Down Expand Up @@ -433,12 +431,10 @@ library(teal.modules.general)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
library(tern)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADLB <- synthetic_cdisc_dataset("latest", "adlb")
ADSL <- random.cdisc.data::cadsl
ADLB <- random.cdisc.data::cadlb
# If PARAMCD and AVISIT are not factors, convert to factors
# Also fill in missing values with "<Missing>"
Expand Down
11 changes: 3 additions & 8 deletions book/graphs/other/cig01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,9 @@ subtitle: Confidence Interval Plot
library(tern)
library(ggplot2)
library(dplyr)
library(scda)
library(scda.2022)
library(nestcolor)
adlb <- synthetic_cdisc_dataset("latest", "adlb") %>%
adlb <- random.cdisc.data::cadlb %>%
filter(PARAMCD == "ALT", AVISIT == "BASELINE")
```

Expand Down Expand Up @@ -214,11 +212,8 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADLB <- synthetic_cdisc_dataset("latest", "adlb")
ADSL <- random.cdisc.data::cadsl
ADLB <- random.cdisc.data::cadlb
})
datanames <- c("ADSL", "ADLB")
datanames(data) <- datanames
Expand Down
12 changes: 4 additions & 8 deletions book/graphs/other/ippg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -16,15 +16,13 @@ For illustration purposes, we will subset the `adlb` dataset for safety populati
#| code-fold: show
library(tern)
library(scda)
library(scda.2022)
library(dplyr)
library(ggplot2)
library(nestcolor)
# use small sample size
adsl <- synthetic_cdisc_dataset("latest", "adsl") %>% slice(1:15)
adlb <- synthetic_cdisc_dataset("latest", "adlb") %>% filter(USUBJID %in% adsl$USUBJID)
adsl <- random.cdisc.data::cadsl %>% slice(1:15)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)
# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adlb <- df_explicit_na(adlb)
Expand Down Expand Up @@ -113,13 +111,11 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
library(dplyr)
# use small sample size
ADSL <- synthetic_cdisc_dataset("latest", "adsl") %>% slice(1:15)
ADLB <- synthetic_cdisc_dataset("latest", "adlb") %>% filter(USUBJID %in% ADSL$USUBJID)
ADSL <- random.cdisc.data::cadsl %>% slice(1:15)
ADLB <- random.cdisc.data::cadlb %>% filter(USUBJID %in% ADSL$USUBJID)
# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
ADSL <- df_explicit_na(ADSL)
Expand Down
10 changes: 4 additions & 6 deletions book/graphs/other/ltg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -15,17 +15,15 @@ Lattice plots are natively handled by R, the examples below rely mostly on the p
```{r setup, message = FALSE}
#| code-fold: show
library(scda)
library(scda.2022)
library(tern)
library(teal.modules.clinical)
library(ggplot2)
library(dplyr)
library(nestcolor)
# Datasets
adsl <- synthetic_cdisc_dataset("latest", "adsl") %>% slice(1:8)
adlb <- synthetic_cdisc_dataset("latest", "adlb") %>% filter(USUBJID %in% adsl$USUBJID)
adsl <- random.cdisc.data::cadsl %>% slice(1:8)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)
# Pre-processing
adlb$AVISIT_txt <- adlb$AVISIT
Expand Down Expand Up @@ -135,8 +133,8 @@ The example below suggests a larger dataset, where the individual subject legend
#| code-fold: show
# Datasets
adsl <- synthetic_cdisc_dataset("latest", "adsl") %>% slice(1:40)
adlb <- synthetic_cdisc_dataset("latest", "adlb") %>% filter(USUBJID %in% adsl$USUBJID)
adsl <- random.cdisc.data::cadsl %>% slice(1:40)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)
# Pre-processing
adlb$AVISIT_txt <- adlb$AVISIT
Expand Down
14 changes: 5 additions & 9 deletions book/graphs/other/mng01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,11 @@ subtitle: Mean Plot
library(dplyr)
library(tern)
library(scda)
library(scda.2022)
library(nestcolor)
adsl <- synthetic_cdisc_dataset("latest", "adsl")
adlb <- synthetic_cdisc_dataset("latest", "adlb")
advs <- synthetic_cdisc_dataset("latest", "advs")
adsl <- random.cdisc.data::cadsl
adlb <- random.cdisc.data::cadlb
advs <- random.cdisc.data::cadvs
adsl_f <- adsl %>%
filter(SAFFL == "Y") %>%
Expand Down Expand Up @@ -211,13 +209,11 @@ library(teal.modules.clinical)
## Data reproducible code
data <- teal_data()
data <- within(data, {
library(scda)
library(scda.2022)
library(dplyr)
library(forcats)
ADSL <- synthetic_cdisc_dataset("latest", "adsl")
ADLB <- synthetic_cdisc_dataset("latest", "adlb") %>%
ADSL <- random.cdisc.data::cadsl
ADLB <- random.cdisc.data::cadlb %>%
mutate(AVISIT = fct_reorder(AVISIT, AVISITN, min))
})
datanames <- c("ADSL", "ADLB")
Expand Down
4 changes: 1 addition & 3 deletions book/graphs/pharmacokinetic/pkcg01.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,11 @@ subtitle: Plot of PK Concentration Over Time by Subject
#| code-fold: show
library(tern)
library(scda)
library(scda.2022)
library(dplyr)
library(ggplot2)
library(nestcolor)
adpc <- synthetic_cdisc_dataset("latest", "adpc")
adpc <- random.cdisc.data::cadpc
```

## Plot in Linear Scale
Expand Down
4 changes: 1 addition & 3 deletions book/graphs/pharmacokinetic/pkcg02.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,11 @@ subtitle: Plot of PK Concentration Over Time by Cohort/Treatment Group/Dose
#| code-fold: show
library(tern)
library(scda)
library(scda.2022)
library(dplyr)
library(ggplot2)
library(nestcolor)
adpc <- synthetic_cdisc_dataset("latest", "adpc")
adpc <- random.cdisc.data::cadpc
```

## Plot in Linear Scale
Expand Down
Loading

0 comments on commit 7a3f457

Please sign in to comment.