Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix indent modifier bug in count_patients_with_flags() #1350

Merged
merged 2 commits into from
Nov 6, 2024

Conversation

edelarua
Copy link
Contributor

@edelarua edelarua commented Nov 6, 2024

Pull Request

Fixes #1349

@edelarua edelarua added the sme label Nov 6, 2024
Copy link
Contributor

github-actions bot commented Nov 6, 2024

Unit Tests Summary

    1 files     84 suites   1m 13s ⏱️
  869 tests   858 ✅  11 💤 0 ❌
1 865 runs  1 170 ✅ 695 💤 0 ❌

Results for commit cc7dbb2.

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Nov 6, 2024

Unit Test Performance Difference

Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
count_patients_with_flags 👶 $+0.08$ count_patients_with_flags_works_with_single_indent_mod_value

Results for commit 3faaecc

♻️ This comment has been updated with latest results.

Copy link
Contributor

github-actions bot commented Nov 6, 2024

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                      65       0  100.00%
R/abnormal_by_marked.R                        55       5  90.91%   93-97
R/abnormal_by_worst_grade_worsen.R           116       3  97.41%   263-265
R/abnormal_by_worst_grade.R                   60       0  100.00%
R/abnormal.R                                  43       0  100.00%
R/analyze_variables.R                        166       2  98.80%   486, 626
R/analyze_vars_in_cols.R                     176      13  92.61%   178, 221, 235-236, 244-252
R/bland_altman.R                              92       1  98.91%   46
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         84       2  97.62%   257, 316
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                          59       1  98.31%   74
R/count_missed_doses.R                        36       0  100.00%
R/count_occurrences_by_grade.R               157       2  98.73%   177, 271
R/count_occurrences.R                        116       1  99.14%   120
R/count_patients_events_in_cols.R             67       1  98.51%   60
R/count_patients_with_event.R                 62       1  98.39%   123
R/count_patients_with_flags.R                 95       1  98.95%   134
R/count_values.R                              27       0  100.00%
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            113       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  50       1  98.00%   65
R/estimate_proportion.R                      205      11  94.63%   83-90, 94, 99, 320, 486
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   141, 276
R/g_forest.R                                 585      60  89.74%   240, 252-255, 260-261, 275, 277, 287-290, 335-338, 345, 414, 501, 514, 518-519, 524-525, 538, 554, 601, 632, 707, 716, 722, 741, 796-816, 819, 830, 849, 904, 907, 1042-1047
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   285-288, 307-309, 363-366, 400, 428, 432-475, 482-486
R/g_lineplot.R                               260      22  91.54%   204, 378-385, 424-434, 543, 551
R/g_step.R                                    68       1  98.53%   108
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    46       0  100.00%
R/h_cox_regression.R                         110       0  100.00%
R/h_incidence_rate.R                          45       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           90      12  86.67%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           88       6  93.18%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       0  100.00%
R/incidence_rate.R                            86       7  91.86%   67-72, 152
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               117       0  100.00%
R/prop_diff_test.R                            91       0  100.00%
R/prop_diff.R                                265      15  94.34%   70-73, 105, 290-297, 440, 605
R/prune_occurrences.R                         57       0  100.00%
R/response_biomarkers_subgroups.R             69       6  91.30%   196-201
R/response_subgroups.R                       213       8  96.24%   100-105, 260-261
R/riskdiff.R                                  65       5  92.31%   102-105, 114
R/rtables_access.R                            38       0  100.00%
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       0  100.00%
R/summarize_ancova.R                         106       2  98.11%   183, 188
R/summarize_change.R                          30       0  100.00%
R/summarize_colvars.R                         10       0  100.00%
R/summarize_coxreg.R                         172       0  100.00%
R/summarize_glm_count.R                      209       3  98.56%   193-194, 490
R/summarize_num_patients.R                    93       4  95.70%   117-119, 266
R/summarize_patients_exposure_in_cols.R       96       1  98.96%   56
R/survival_biomarkers_subgroups.R             78       6  92.31%   117-122
R/survival_coxph_pairwise.R                   79      11  86.08%   51-52, 64-72
R/survival_duration_subgroups.R              211       6  97.16%   124-129
R/survival_time.R                             79       0  100.00%
R/survival_timepoint.R                       113       7  93.81%   125-131
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       124       0  100.00%
R/utils_factor.R                             109       2  98.17%   84, 302
R/utils_ggplot.R                             110       0  100.00%
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            100       4  96.00%   39, 46, 403-404
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      10647     463  95.65%

Diff against main

Filename                         Stmts    Miss  Cover
-----------------------------  -------  ------  -------
R/count_patients_with_flags.R       +1       0  +0.01%
TOTAL                               +1       0  +0.00%

Results for commit: cc7dbb2

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

@ayogasekaram ayogasekaram left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lgtm! Thanks @edelarua

@edelarua edelarua merged commit a7b7523 into main Nov 6, 2024
29 checks passed
@edelarua edelarua deleted the 1349_count_pts_flags@main branch November 6, 2024 21:30
@github-actions github-actions bot locked and limited conversation to collaborators Nov 6, 2024
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[Bug]: count_patients_with_flags() single indent modifier not working
2 participants