Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

🗃️ decorators feature branch #795

Merged
merged 68 commits into from
Nov 29, 2024
Merged
Show file tree
Hide file tree
Changes from 54 commits
Commits
Show all changes
68 commits
Select commit Hold shift + click to select a range
661585d
WIP
gogonzo Oct 1, 2024
de6f56c
reorg regression for decoration
gogonzo Oct 1, 2024
f014f3e
feat: refactored outliers to allow for decorators (#788)
kpagacz Oct 4, 2024
6bb26f5
regression with validate
gogonzo Oct 4, 2024
d045e7b
elo
gogonzo Oct 4, 2024
95e0fbf
fixes
gogonzo Oct 4, 2024
bf87833
conditionalPanel for regression
gogonzo Oct 7, 2024
7c4996c
fix after teal
gogonzo Oct 9, 2024
8e8457d
fix error
gogonzo Oct 15, 2024
40f053a
Merge branch 'main' into 1187_decorate_output@main
gogonzo Nov 12, 2024
b6d9bff
update tm_a_regression and tm_outliers after changes in teal for the …
m7pr Nov 18, 2024
5196b7f
Update R/tm_outliers.R
m7pr Nov 18, 2024
f28d40d
unify decorators usage with outliers
m7pr Nov 18, 2024
bf0af48
Apply suggestions from code review
m7pr Nov 18, 2024
d52361b
add req statements to get_code
m7pr Nov 19, 2024
a3d3de8
remove examples and link to the vignette
m7pr Nov 19, 2024
7aed6cd
[skip style] [skip vbump] Restyle files
github-actions[bot] Nov 19, 2024
b26a29d
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 19, 2024
29eae48
Update R/tm_outliers.R
m7pr Nov 20, 2024
e598755
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 20, 2024
c491777
updates for req and documentation
m7pr Nov 20, 2024
09bb242
Merge branch '1187_decorate_output@main' of https://github.com/insigh…
m7pr Nov 20, 2024
1c10233
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 20, 2024
97e60ef
move tm_outliers changes to different PR
m7pr Nov 20, 2024
3d48ec6
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 20, 2024
4c4d214
add req statement so that when srv_teal_transform_data returns NULL y…
m7pr Nov 21, 2024
ce1ba17
[skip style] [skip vbump] Restyle files
github-actions[bot] Nov 21, 2024
6dcb2ef
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 21, 2024
cf4371f
introduce decorators for `tm_g_bivariate` (#797)
m7pr Nov 21, 2024
612bb06
introduce decorators for `tm_g_response` (#802)
averissimo Nov 21, 2024
006b374
introduce decorators for `tm_g_distribution` (#801)
averissimo Nov 21, 2024
56be63f
[skip style] [skip vbump] Restyle files
github-actions[bot] Nov 21, 2024
7deda6d
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 21, 2024
824efcf
introduce decorators for `tm_t_crosstable` (#806)
m7pr Nov 22, 2024
0fcddf0
introduce decorators for `tm_a_pca` (#798)
m7pr Nov 22, 2024
f915e29
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 22, 2024
ba642f0
chore: rename ui/srv_teal_transform_data to ui/srv_transform_teal_data
averissimo Nov 22, 2024
11d9ea8
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 22, 2024
5f2d532
fix: move print statement after decoration
averissimo Nov 22, 2024
89f1d44
clean up print(plot) in `tm_g_distribution` module (#810)
m7pr Nov 22, 2024
9375353
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 22, 2024
09968a8
introduce decorators for `tm_g_scatterplotmatrix` (#808)
m7pr Nov 22, 2024
0870002
introduce decorators for `tm_g_scatterplot` (#807)
m7pr Nov 22, 2024
b6ca759
introduce decorators for `tm_g_association` (#800)
m7pr Nov 22, 2024
fb28571
introduce decorators for `tm_data_table` (#799)
m7pr Nov 22, 2024
9ef1032
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 22, 2024
9ae70c4
simplify usage for regression
m7pr Nov 25, 2024
18f1618
introduce decorators for `tm_missing_data` (#809)
m7pr Nov 26, 2024
817123a
introduce decorators for `tm_outliers` (#805)
m7pr Nov 26, 2024
9712e1c
[skip style] [skip vbump] Restyle files
github-actions[bot] Nov 26, 2024
8a96128
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 26, 2024
7e81203
revert: tm_missing_data qenv creation
averissimo Nov 26, 2024
4824e27
Updates "Decorators" to use name-based execution and new wrappers (#812)
averissimo Nov 28, 2024
6908d9c
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 28, 2024
39437e7
Update R/tm_g_distribution.R
averissimo Nov 28, 2024
2478c93
fix: linter error with long line
averissimo Nov 28, 2024
94cc740
docs: regenerate man pages
averissimo Nov 28, 2024
0357e15
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 28, 2024
0b2967e
fix: 3 out 4 e2e tests
averissimo Nov 28, 2024
040b311
fix: value was 2 not 1 in main
averissimo Nov 28, 2024
4e0d82e
docs: update missing @param
averissimo Nov 29, 2024
737fe42
docs: typo
averissimo Nov 29, 2024
f5a741a
fix: R CMD check errors and adds lifecycle to dependencies
averissimo Nov 29, 2024
db6793f
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 29, 2024
0048a41
fix: wrong function was being called
averissimo Nov 29, 2024
630ee6a
feat: build output objects separately
averissimo Nov 29, 2024
097326e
[skip roxygen] [skip vbump] Roxygen Man Pages Auto Update
dependabot-preview[bot] Nov 29, 2024
1af3642
fix: minor bug
averissimo Nov 29, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions R/roxygen2_templates.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# nocov start
m7pr marked this conversation as resolved.
Show resolved Hide resolved
roxygen_decorators_param <- function(module_name) {
paste(
sep = " ",
lifecycle::badge("experimental"),
" (`list` of `teal_transform_module`, named `list` of `teal_transform_module` or",
"`NULL`) optional, if not `NULL`, decorator for tables or plots included in the module.",
"When a named list of `teal_transform_module`, the decorators are applied to the",
"respective output objects.\n\n",
"Otherwise, the decorators are applied to all objects, which is equivalent as using the name `default`.\n\n",
sprintf("See section \"Decorating `%s`\"", module_name),
"below for more details."
)
}

roxygen_ggplot2_args_param <- function(...) {
paste(
sep = " ",
"(`ggplot2_args`) optional, object created by [`teal.widgets::ggplot2_args()`]",
"with settings for all the plots or named list of `ggplot2_args` objects for plot-specific settings.",
"The argument is merged with options variable `teal.ggplot2_args` and default module setup.\n\n",
sprintf(
"List names should match the following: `c(\"default\", %s)`.\n\n",
paste("\"", unlist(rlang::list2(...)), "\"", collapse = ", ", sep = "")
),
"For more details see the vignette: `vignette(\"custom-ggplot2-arguments\", package = \"teal.widgets\")`."
)
}

# nocov end
151 changes: 120 additions & 31 deletions R/tm_a_pca.R
Original file line number Diff line number Diff line change
Expand Up @@ -13,16 +13,46 @@
#' It controls the font size for plot titles, axis labels, and legends.
#' - If vector of `length == 1` then the font sizes will have a fixed size.
#' - while vector of `value`, `min`, and `max` allows dynamic adjustment.
#' @templateVar ggnames "Elbow plot", "Circle plot", "Biplot", "Eigenvector plot"
#' @template ggplot2_args_multi
#' @param ggplot2_args `r roxygen_ggplot2_args_param("Elbow plot", "Circle plot", "Biplot", "Eigenvector plot")`
#' @param decorators `r roxygen_decorators_param("tm_a_pca")`
averissimo marked this conversation as resolved.
Show resolved Hide resolved
#'
#' @inherit shared_params return
#'
#' @section Decorating `tm_a_pca`:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `elbow_plot` (`ggplot2`)
#' - `circle_plot` (`ggplot2`)
#' - `biplot` (`ggplot2`)
averissimo marked this conversation as resolved.
Show resolved Hide resolved
#' - `eigenvector_plot` (`ggplot2`)
#'
#' Decorators can be applied to all outputs or only to specific objects using a
#' named list of `teal_transform_module` objects.
#' The `"default"` name is reserved for decorators that are applied to all outputs.
#' See code snippet below:
#'
#' ```
#' tm_a_pca(
#' ..., # arguments for module
#' decorators = list(
#' default = list(teal_transform_module(...)), # applied to all outputs
#' elbow_plot = list(teal_transform_module(...)), # applied only to `elbow_plot` output
#' circle_plot = list(teal_transform_module(...)) # applied only to `circle_plot` output
#' biplot = list(teal_transform_module(...)) # applied only to `biplot` output
#' eigenvector_plot = list(teal_transform_module(...)) # applied only to `eigenvector_plot` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-modules-output", package = "teal")` or the [`teal_transform_module()`] documentation.
#'
#' @examplesShinylive
#' library(teal.modules.general)
#' interactive <- function() TRUE
#' {{ next_example }}
#' @examples
#'
#' # general data example
#' data <- teal_data()
#' data <- within(data, {
Expand Down Expand Up @@ -58,6 +88,7 @@
#' interactive <- function() TRUE
#' {{ next_example }}
#' @examples
#'
#' # CDISC data example
#' data <- teal_data()
#' data <- within(data, {
Expand Down Expand Up @@ -102,7 +133,8 @@ tm_a_pca <- function(label = "Principal Component Analysis",
alpha = c(1, 0, 1),
size = c(2, 1, 8),
pre_output = NULL,
post_output = NULL) {
post_output = NULL,
decorators = NULL) {
message("Initializing tm_a_pca")

# Normalize the parameters
Expand Down Expand Up @@ -152,6 +184,10 @@ tm_a_pca <- function(label = "Principal Component Analysis",

checkmate::assert_multi_class(pre_output, c("shiny.tag", "shiny.tag.list", "html"), null.ok = TRUE)
checkmate::assert_multi_class(post_output, c("shiny.tag", "shiny.tag.list", "html"), null.ok = TRUE)

available_decorators <- c("elbow_plot", "circle_plot", "biplot", "eigenvector_plot")
decorators <- normalize_decorators(decorators)
assert_decorators(decorators, null.ok = TRUE, available_decorators)
# End of assertions

# Make UI args
Expand All @@ -169,7 +205,8 @@ tm_a_pca <- function(label = "Principal Component Analysis",
list(
plot_height = plot_height,
plot_width = plot_width,
ggplot2_args = ggplot2_args
ggplot2_args = ggplot2_args,
decorators = decorators
)
),
datanames = teal.transform::get_extract_datanames(data_extract_list)
Expand Down Expand Up @@ -224,6 +261,34 @@ ui_a_pca <- function(id, ...) {
label = "Plot type",
choices = args$plot_choices,
selected = args$plot_choices[1]
),
conditionalPanel(
condition = sprintf("input['%s'] == 'Elbow plot'", ns("plot_type")),
ui_decorate_teal_data(
ns("d_elbow_plot"),
decorators = select_decorators(args$decorators, "elbow_plot")
)
),
conditionalPanel(
condition = sprintf("input['%s'] == 'Circle plot'", ns("plot_type")),
ui_decorate_teal_data(
ns("d_circle_plot"),
decorators = select_decorators(args$decorators, "circle_plot")
)
),
conditionalPanel(
condition = sprintf("input['%s'] == 'Biplot'", ns("plot_type")),
ui_decorate_teal_data(
ns("d_biplot"),
decorators = select_decorators(args$decorators, "biplot")
)
),
conditionalPanel(
condition = sprintf("input['%s'] == 'Eigenvector plot'", ns("plot_type")),
ui_decorate_teal_data(
ns("d_eigenvector_plot"),
decorators = select_decorators(args$decorators, "eigenvector_plot")
)
)
),
teal.widgets::panel_item(
Expand Down Expand Up @@ -289,7 +354,7 @@ ui_a_pca <- function(id, ...) {
}

# Server function for the PCA module
srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, plot_width, ggplot2_args) {
srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, plot_width, ggplot2_args, decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
Expand Down Expand Up @@ -549,7 +614,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
)

cols <- c(getOption("ggplot2.discrete.colour"), c("lightblue", "darkred", "black"))[1:3]
g <- ggplot(mapping = aes_string(x = "component", y = "value")) +
elbow_plot <- ggplot(mapping = aes_string(x = "component", y = "value")) +
geom_bar(
aes(fill = "Single variance"),
data = dplyr::filter(elb_dat, metric == "Proportion of Variance"),
Expand All @@ -569,8 +634,6 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
scale_fill_manual(values = c("Cumulative variance" = cols[2], "Single variance" = cols[1])) +
ggthemes +
themes

print(g)
},
env = list(
ggthemes = parsed_ggplot2_args$ggtheme,
Expand Down Expand Up @@ -628,7 +691,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
y = sin(seq(0, 2 * pi, length.out = 100))
)

g <- ggplot(pca_rot) +
circle_plot <- ggplot(pca_rot) +
geom_point(aes_string(x = x_axis, y = y_axis)) +
geom_label(
aes_string(x = x_axis, y = y_axis, label = "label"),
Expand All @@ -640,7 +703,6 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
labs +
ggthemes +
themes
print(g)
},
env = list(
x_axis = x_axis,
Expand Down Expand Up @@ -861,8 +923,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
qenv,
substitute(
expr = {
g <- plot_call
print(g)
biplot <- plot_call
},
env = list(
plot_call = Reduce(function(x, y) call("+", x, y), pca_plot_biplot_expr)
Expand All @@ -871,8 +932,8 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
)
}

# plot pc_var ----
plot_pc_var <- function(base_q) {
# plot eigenvector_plot ----
plot_eigenvector <- function(base_q) {
pc <- input$pc
ggtheme <- input$ggtheme

Expand Down Expand Up @@ -938,10 +999,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
expr = {
pca_rot <- pca$rotation[, pc, drop = FALSE] %>%
dplyr::as_tibble(rownames = "Variable")

g <- plot_call

print(g)
eigenvector_plot <- plot_call
},
env = list(
pc = pc,
Expand All @@ -951,23 +1009,54 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
)
}

# plot final ----
output_q <- reactive({
req(computation())
teal::validate_inputs(iv_r())
teal::validate_inputs(iv_extra, header = "Plot settings are required")
# qenvs ---
output_q <- lapply(
list(
elbow_plot = plot_elbow,
circle_plot = plot_circle,
biplot = plot_biplot,
eigenvector_plot = plot_eigenvector
),
function(fun) {
reactive({
req(computation())
teal::validate_inputs(iv_r())
teal::validate_inputs(iv_extra, header = "Plot settings are required")
fun(computation())
})
}
)

switch(input$plot_type,
"Elbow plot" = plot_elbow(computation()),
"Circle plot" = plot_circle(computation()),
"Biplot" = plot_biplot(computation()),
"Eigenvector plot" = plot_pc_var(computation()),
decorated_q <- mapply(
function(obj_name, q) {
srv_decorate_teal_data(
id = sprintf("d_%s", obj_name),
data = q,
decorators = select_decorators(decorators, obj_name),
expr = reactive({
substitute(print(.plot), env = list(.plot = as.name(obj_name)))
}),
expr_is_reactive = TRUE
)
},
names(output_q),
output_q
)

# plot final ----
decorated_output_q <- reactive({
switch(req(input$plot_type),
"Elbow plot" = decorated_q$elbow_plot(),
"Circle plot" = decorated_q$circle_plot(),
"Biplot" = decorated_q$biplot(),
"Eigenvector plot" = decorated_q$eigenvector_plot(),
stop("Unknown plot")
)
})

plot_r <- reactive({
output_q()[["g"]]
plot_name <- gsub(" ", "_", tolower(req(input$plot_type)))
req(decorated_output_q())[[plot_name]]
})

pws <- teal.widgets::plot_with_settings_srv(
Expand Down Expand Up @@ -1034,7 +1123,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl

teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = reactive(teal.code::get_code(output_q())),
verbatim_content = reactive(teal.code::get_code(req(decorated_output_q()))),
title = "R Code for PCA"
)

Expand All @@ -1057,7 +1146,7 @@ srv_a_pca <- function(id, data, reporter, filter_panel_api, dat, plot_height, pl
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(teal.code::get_code(output_q()))
card$append_src(teal.code::get_code(req(decorated_output_q())))
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
Expand Down
Loading
Loading