-
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding
ard_emmeans_mean_difference()
(#130)
**What changes are proposed in this pull request?** * Adding `ard_emmeans_mean_difference()`. (#34) Provide more detail here as needed. **Reference GitHub issue associated with pull request.** _e.g., 'closes #<issue number>'_ closes #34 -------------------------------------------------------------------------------- Pre-review Checklist (if item does not apply, mark is as complete) - [ ] **All** GitHub Action workflows pass with a ✅ - [ ] PR branch has pulled the most recent updates from master branch: `usethis::pr_merge_main()` - [ ] If a bug was fixed, a unit test was added. - [ ] If a new `ard_*()` function was added, it passes the ARD structural checks from `cards::check_ard_structure()`. - [ ] If a new `ard_*()` function was added, `set_cli_abort_call()` has been set. - [ ] If a new `ard_*()` function was added and it depends on another package (such as, `broom`), `is_pkg_installed("broom", reference_pkg = "cardx")` has been set in the function call and the following added to the roxygen comments: `@examplesIf do.call(asNamespace("cardx")$is_pkg_installed, list(pkg = "broom"", reference_pkg = "cardx"))` - [ ] Code coverage is suitable for any new functions/features (generally, 100% coverage for new code): `devtools::test_coverage()` Reviewer Checklist (if item does not apply, mark is as complete) - [ ] If a bug was fixed, a unit test was added. - [ ] Code coverage is suitable for any new functions/features: `devtools::test_coverage()` When the branch is ready to be merged: - [ ] Update `NEWS.md` with the changes from this pull request under the heading "`# cardx (development version)`". If there is an issue associated with the pull request, reference it in parentheses at the end update (see `NEWS.md` for examples). - [ ] **All** GitHub Action workflows pass with a ✅ - [ ] Approve Pull Request - [ ] Merge the PR. Please use "Squash and merge" or "Rebase and merge".
- Loading branch information
Showing
9 changed files
with
306 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
#' ARD for LS Mean Difference | ||
#' | ||
#' @description | ||
#' This function calculates least-squares mean differences using the 'emmeans' | ||
#' package using the following | ||
#' | ||
#' ```r | ||
#' emmeans::emmeans(object = <regression model>, specs = ~ <primary covariate>) |> | ||
#' emmeans::contrast(method = "pairwise") |> | ||
#' summary(infer = TRUE, level = <confidence level>) | ||
#' ``` | ||
#' | ||
#' The arguments `data`, `formula`, `method`, `method.args`, `package` are used | ||
#' to construct the regression model via `cardx::construct_model()`. | ||
#' | ||
#' @param data (`data.frame`/`survey.design`)\cr | ||
#' a data frame or survey design object | ||
#' @inheritParams construct_model | ||
#' @param response_type (`string`) | ||
#' string indicating whether the model outcome is `'continuous'` | ||
#' or `'binary'`. When `'binary'`, the call to `emmeans::emmeans()` is | ||
#' supplemented with argument `regrid="response"`. | ||
#' @param conf.level (scalar `numeric`)\cr | ||
#' confidence level for confidence interval. Default is `0.95`. | ||
#' @param primary_covariate (`string`)\cr | ||
#' string indicating the primary covariate (typically the dichotomous treatment variable). | ||
#' Default is the first covariate listed in the formula. | ||
#' | ||
#' @return ARD data frame | ||
#' @export | ||
#' | ||
#' @examplesIf do.call(asNamespace("cardx")$is_pkg_installed, list(pkg = "emmeans", reference_pkg = "cardx")) | ||
#' ard_emmeans_mean_difference( | ||
#' data = mtcars, | ||
#' formula = mpg ~ am + cyl, | ||
#' method = "lm" | ||
#' ) | ||
#' | ||
#' ard_emmeans_mean_difference( | ||
#' data = mtcars, | ||
#' formula = vs ~ am + mpg, | ||
#' method = "glm", | ||
#' method.args = list(family = binomial), | ||
#' response_type = "binary" | ||
#' ) | ||
ard_emmeans_mean_difference <- function(data, formula, method, | ||
method.args = list(), | ||
package = "base", | ||
response_type = c("continuous", "binary"), | ||
conf.level = 0.95, | ||
primary_covariate = | ||
stats::terms(formula) |> | ||
attr("term.labels") |> | ||
getElement(1L)) { | ||
set_cli_abort_call() | ||
|
||
# check package installation ------------------------------------------------- | ||
check_pkg_installed(c("emmeans", package), reference_pkg = "cardx") | ||
check_not_missing(data) | ||
check_not_missing(formula) | ||
check_not_missing(method) | ||
check_class(data, c("data.frame", "survey.design")) | ||
check_class(formula, cls = "formula") | ||
check_string(package) | ||
check_string(primary_covariate) | ||
check_scalar(conf.level) | ||
check_range(conf.level, range = c(0, 1)) | ||
response_type <- arg_match(response_type, error_call = get_cli_abort_call()) | ||
|
||
# construct primary model ---------------------------------------------------- | ||
mod <- | ||
construct_model( | ||
x = data, formula = formula, method = method, | ||
method.args = {{ method.args }}, | ||
package = package, env = caller_env() | ||
) | ||
|
||
# emmeans -------------------------------------------------------------------- | ||
emmeans_args <- list(object = mod, specs = reformulate2(primary_covariate)) | ||
if (response_type %in% "binary") emmeans_args <- c(emmeans_args, list(regrid = "response")) | ||
emmeans <- | ||
withr::with_namespace( | ||
package = "emmeans", | ||
code = do.call("emmeans", args = emmeans_args) | ||
) | ||
|
||
df_results <- | ||
emmeans |> | ||
emmeans::contrast(method = "pairwise") |> | ||
summary(infer = TRUE, level = conf.level) | ||
|
||
# convert results to ARD format ---------------------------------------------- | ||
df_results |> | ||
dplyr::as_tibble() |> | ||
dplyr::rename( | ||
conf.low = any_of("asymp.LCL"), | ||
conf.high = any_of("asymp.UCL"), | ||
conf.low = any_of("lower.CL"), | ||
conf.high = any_of("upper.CL") | ||
) %>% | ||
dplyr::select( | ||
variable_level = "contrast", | ||
"estimate", | ||
std.error = "SE", "df", | ||
"conf.low", "conf.high", "p.value" | ||
) %>% | ||
dplyr::mutate( | ||
conf.level = .env$conf.level, | ||
method = | ||
ifelse( | ||
length(attr(stats::terms(formula), "term.labels") |> discard(~ startsWith(., "1 |"))) == 1L, | ||
"Least-squares mean difference", | ||
"Least-squares adjusted mean difference" | ||
), | ||
across(everything(), as.list), | ||
variable = "contrast", | ||
group1 = .env$primary_covariate | ||
) |> | ||
tidyr::pivot_longer( | ||
cols = -c("group1", "variable", "variable_level"), | ||
names_to = "stat_name", | ||
values_to = "stat" | ||
) |> | ||
dplyr::left_join(.df_ttest_stat_labels(primary_covariate), by = "stat_name") |> | ||
dplyr::mutate( | ||
context = "emmeans_mean_difference", | ||
stat_label = dplyr::coalesce(.data$stat_label, .data$stat_name), | ||
warning = list(NULL), | ||
error = list(NULL), | ||
fmt_fn = map(.data$stat, \(.x) if (is.numeric(.x)) 1L else NULL) # styler: off | ||
) |> | ||
cards::tidy_ard_column_order() %>% | ||
{structure(., class = c("card", class(.)))} # styler: off | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -24,6 +24,7 @@ clopper | |
coull | ||
de | ||
deff | ||
emmeans | ||
funder | ||
jeffreys | ||
pearson | ||
|
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
skip_if_not(is_pkg_installed(c("emmeans", "survey", "lme4"), reference_pkg = "cardx")) | ||
|
||
test_that("ard_emmeans_mean_difference() works", { | ||
expect_error( | ||
ard_emmeans_mean_difference <- | ||
ard_emmeans_mean_difference( | ||
data = mtcars, | ||
formula = vs ~ am + mpg, | ||
method = "glm", | ||
method.args = list(family = binomial), | ||
response_type = "binary" | ||
), | ||
NA | ||
) | ||
expect_equal( | ||
cards::get_ard_statistics(ard_emmeans_mean_difference, stat_name %in% "method"), | ||
list(method = "Least-squares adjusted mean difference") | ||
) | ||
expect_equal( | ||
cards::get_ard_statistics(ard_emmeans_mean_difference, stat_name %in% "estimate") |> | ||
unlist() |> | ||
unname(), | ||
glm(vs ~ am + mpg, data = mtcars, family = binomial) |> | ||
emmeans::emmeans(specs = ~am, regrid = "response") |> | ||
emmeans::contrast(method = "pairwise") |> | ||
summary(infer = TRUE) |> | ||
getElement("estimate") | ||
) | ||
|
||
|
||
expect_error( | ||
ard_emmeans_mean_difference_lme4 <- | ||
ard_emmeans_mean_difference( | ||
data = mtcars, | ||
formula = vs ~ am + (1 | cyl), | ||
method = "glmer", | ||
method.args = list(family = binomial), | ||
package = "lme4", | ||
response_type = "binary" | ||
), | ||
NA | ||
) | ||
expect_equal( | ||
cards::get_ard_statistics(ard_emmeans_mean_difference_lme4, stat_name %in% "method"), | ||
list(method = "Least-squares mean difference") | ||
) | ||
expect_equal( | ||
cards::get_ard_statistics(ard_emmeans_mean_difference_lme4, stat_name %in% "estimate") |> | ||
unlist() |> | ||
unname(), | ||
lme4::glmer(vs ~ am + (1 | cyl), data = mtcars, family = binomial) |> | ||
emmeans::emmeans(specs = ~am, regrid = "response") |> | ||
emmeans::contrast(method = "pairwise") |> | ||
summary(infer = TRUE) |> | ||
getElement("estimate") | ||
) | ||
|
||
|
||
#styler: off | ||
expect_error({ | ||
data(api, package = "survey") | ||
ard_emmeans_mean_difference_svy <- | ||
survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc) |> | ||
ard_emmeans_mean_difference( | ||
formula = api00 ~ sch.wide, | ||
method = "svyglm", | ||
package = "survey" | ||
)}, | ||
NA | ||
) | ||
# styler: on | ||
expect_equal( | ||
cards::get_ard_statistics(ard_emmeans_mean_difference_svy, stat_name %in% "method"), | ||
list(method = "Least-squares mean difference") | ||
) | ||
expect_equal( | ||
cards::get_ard_statistics(ard_emmeans_mean_difference_svy, stat_name %in% "estimate") |> | ||
unlist() |> | ||
unname(), | ||
survey::svyglm(api00 ~ sch.wide, design = survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)) |> | ||
emmeans::emmeans(specs = ~sch.wide, regrid = "response") |> | ||
emmeans::contrast(method = "pairwise") |> | ||
summary(infer = TRUE) |> | ||
getElement("estimate") | ||
) | ||
}) |