Skip to content

Commit

Permalink
Fix the schema mismatch between logical and physical for aggregate fu…
Browse files Browse the repository at this point in the history
…nction, add `AggregateUDFImpl::is_null` (apache#11989)

* schema assertion and fix the mismatch from logical and physical

Signed-off-by: jayzhan211 <[email protected]>

* add more msg

Signed-off-by: jayzhan211 <[email protected]>

* cleanup

Signed-off-by: jayzhan211 <[email protected]>

* rm test1

Signed-off-by: jayzhan211 <[email protected]>

* nullable for scalar func

Signed-off-by: jayzhan211 <[email protected]>

* nullable

Signed-off-by: jayzhan211 <[email protected]>

* rm field

Signed-off-by: jayzhan211 <[email protected]>

* rm unsafe block and use internal error

Signed-off-by: jayzhan211 <[email protected]>

* rm func_name

Signed-off-by: jayzhan211 <[email protected]>

* rm nullable option

Signed-off-by: jayzhan211 <[email protected]>

* add test

Signed-off-by: jayzhan211 <[email protected]>

* add more msg

Signed-off-by: jayzhan211 <[email protected]>

* fix test

Signed-off-by: jayzhan211 <[email protected]>

* rm row number

Signed-off-by: jayzhan211 <[email protected]>

* Update datafusion/expr/src/udaf.rs

Co-authored-by: Andrew Lamb <[email protected]>

* Update datafusion/expr/src/udaf.rs

Co-authored-by: Andrew Lamb <[email protected]>

* fix failed test from apache#12050

Signed-off-by: jayzhan211 <[email protected]>

* cleanup

Signed-off-by: jayzhan211 <[email protected]>

* add doc

Signed-off-by: jayzhan211 <[email protected]>

---------

Signed-off-by: jayzhan211 <[email protected]>
Co-authored-by: Andrew Lamb <[email protected]>
  • Loading branch information
jayzhan211 and alamb authored Aug 21, 2024
1 parent e6e1eb2 commit 6786f15
Show file tree
Hide file tree
Showing 28 changed files with 274 additions and 135 deletions.
34 changes: 17 additions & 17 deletions datafusion/core/src/physical_optimizer/enforce_sorting.rs
Original file line number Diff line number Diff line change
Expand Up @@ -845,17 +845,17 @@ mod tests {

let physical_plan = bounded_window_exec("non_nullable_col", sort_exprs, filter);

let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" FilterExec: NOT non_nullable_col@1",
" SortExec: expr=[non_nullable_col@1 ASC NULLS LAST], preserve_partitioning=[false]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" CoalesceBatchesExec: target_batch_size=128",
" SortExec: expr=[non_nullable_col@1 DESC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];

let expected_optimized = ["WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
let expected_optimized = ["WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
" FilterExec: NOT non_nullable_col@1",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" CoalesceBatchesExec: target_batch_size=128",
" SortExec: expr=[non_nullable_col@1 DESC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];
Expand Down Expand Up @@ -1722,15 +1722,15 @@ mod tests {
// corresponding SortExecs together. Also, the inputs of these `SortExec`s
// are not necessarily the same to be able to remove them.
let expected_input = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 DESC NULLS LAST]",
" UnionExec",
" SortExec: expr=[nullable_col@0 DESC NULLS LAST], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC, non_nullable_col@1 ASC]",
" SortExec: expr=[nullable_col@0 DESC NULLS LAST], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]"];
let expected_optimized = [
"WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
"WindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(NULL), is_causal: false }]",
" SortPreservingMergeExec: [nullable_col@0 ASC]",
" UnionExec",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC, non_nullable_col@1 ASC]",
Expand Down Expand Up @@ -1760,14 +1760,14 @@ mod tests {

// The `WindowAggExec` can get its required sorting from the leaf nodes directly.
// The unnecessary SortExecs should be removed
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 ASC,non_nullable_col@1 ASC]",
" UnionExec",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]"];
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [nullable_col@0 ASC]",
" UnionExec",
" ParquetExec: file_groups={1 group: [[x]]}, projection=[nullable_col, non_nullable_col], output_ordering=[nullable_col@0 ASC]",
Expand Down Expand Up @@ -2060,15 +2060,15 @@ mod tests {
let physical_plan =
bounded_window_exec("non_nullable_col", sort_exprs1, window_agg2);

let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_input = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[nullable_col@0 ASC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];

let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
let expected_optimized = ["BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[nullable_col@0 ASC,non_nullable_col@1 ASC], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"];
assert_optimized!(expected_input, expected_optimized, physical_plan, true);
Expand Down Expand Up @@ -2134,7 +2134,7 @@ mod tests {
let expected_input = vec![
"SortExec: expr=[nullable_col@0 ASC], preserve_partitioning=[false]",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" MemoryExec: partitions=1, partition_sizes=[0]",
];
assert_eq!(
Expand Down Expand Up @@ -2386,15 +2386,15 @@ mod tests {
let physical_plan = bounded_window_exec("a", sort_exprs, spm);

let expected_input = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortPreservingMergeExec: [a@0 ASC,b@1 ASC]",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10, preserve_order=true, sort_exprs=a@0 ASC,b@1 ASC",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=1",
" SortExec: expr=[a@0 ASC,b@1 ASC], preserve_partitioning=[false]",
" CsvExec: file_groups={1 group: [[x]]}, projection=[a, b, c, d, e], has_header=false",
];
let expected_optimized = [
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[a@0 ASC,b@1 ASC], preserve_partitioning=[false]",
" CoalescePartitionsExec",
" RepartitionExec: partitioning=RoundRobinBatch(10), input_partitions=10",
Expand Down
4 changes: 2 additions & 2 deletions datafusion/core/src/physical_optimizer/sanity_checker.rs
Original file line number Diff line number Diff line change
Expand Up @@ -437,7 +437,7 @@ mod tests {
let sort = sort_exec(sort_exprs.clone(), source);
let bw = bounded_window_exec("c9", sort_exprs, sort);
assert_plan(bw.as_ref(), vec![
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" SortExec: expr=[c9@0 ASC NULLS LAST], preserve_partitioning=[false]",
" MemoryExec: partitions=1, partition_sizes=[0]"
]);
Expand All @@ -460,7 +460,7 @@ mod tests {
)];
let bw = bounded_window_exec("c9", sort_exprs, source);
assert_plan(bw.as_ref(), vec![
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
"BoundedWindowAggExec: wdw=[count: Ok(Field { name: \"count\", data_type: Int64, nullable: false, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(NULL), end_bound: CurrentRow, is_causal: false }], mode=[Sorted]",
" MemoryExec: partitions=1, partition_sizes=[0]"
]);
// Order requirement of the `BoundedWindowAggExec` is not satisfied. We expect to receive error during sanity check.
Expand Down
11 changes: 8 additions & 3 deletions datafusion/core/src/physical_planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -670,6 +670,12 @@ impl DefaultPhysicalPlanner {
let input_exec = children.one()?;
let physical_input_schema = input_exec.schema();
let logical_input_schema = input.as_ref().schema();
let physical_input_schema_from_logical: Arc<Schema> =
logical_input_schema.as_ref().clone().into();

if physical_input_schema != physical_input_schema_from_logical {
return internal_err!("Physical input schema should be the same as the one converted from logical input schema.");
}

let groups = self.create_grouping_physical_expr(
group_expr,
Expand Down Expand Up @@ -1548,7 +1554,7 @@ pub fn create_aggregate_expr_with_name_and_maybe_filter(
e: &Expr,
name: Option<String>,
logical_input_schema: &DFSchema,
_physical_input_schema: &Schema,
physical_input_schema: &Schema,
execution_props: &ExecutionProps,
) -> Result<AggregateExprWithOptionalArgs> {
match e {
Expand Down Expand Up @@ -1599,11 +1605,10 @@ pub fn create_aggregate_expr_with_name_and_maybe_filter(
let ordering_reqs: Vec<PhysicalSortExpr> =
physical_sort_exprs.clone().unwrap_or(vec![]);

let schema: Schema = logical_input_schema.clone().into();
let agg_expr =
AggregateExprBuilder::new(func.to_owned(), physical_args.to_vec())
.order_by(ordering_reqs.to_vec())
.schema(Arc::new(schema))
.schema(Arc::new(physical_input_schema.to_owned()))
.alias(name)
.with_ignore_nulls(ignore_nulls)
.with_distinct(*distinct)
Expand Down
26 changes: 18 additions & 8 deletions datafusion/expr/src/expr_schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -335,18 +335,28 @@ impl ExprSchemable for Expr {
}
}
Expr::Cast(Cast { expr, .. }) => expr.nullable(input_schema),
Expr::ScalarFunction(ScalarFunction { func, args }) => {
Ok(func.is_nullable(args, input_schema))
}
Expr::AggregateFunction(AggregateFunction { func, .. }) => {
// TODO: UDF should be able to customize nullability
if func.name() == "count" {
Ok(false)
} else {
Ok(true)
}
Ok(func.is_nullable())
}
Expr::WindowFunction(WindowFunction { fun, .. }) => match fun {
WindowFunctionDefinition::BuiltInWindowFunction(func) => {
if func.name() == "RANK"
|| func.name() == "NTILE"
|| func.name() == "CUME_DIST"
{
Ok(false)
} else {
Ok(true)
}
}
WindowFunctionDefinition::AggregateUDF(func) => Ok(func.is_nullable()),
WindowFunctionDefinition::WindowUDF(udwf) => Ok(udwf.nullable()),
},
Expr::ScalarVariable(_, _)
| Expr::TryCast { .. }
| Expr::ScalarFunction(..)
| Expr::WindowFunction { .. }
| Expr::Unnest(_)
| Expr::Placeholder(_) => Ok(true),
Expr::IsNull(_)
Expand Down
Loading

0 comments on commit 6786f15

Please sign in to comment.