Skip to content

icey-zhang/SuperYOLO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery

⭐ This code has been completely released ⭐

⭐ our article

⭐ We also finish the work about the quantization based on SuperYOLO: Guided Hybrid Quantization for Object Detection in Multimodal Remote Sensing Imagery via One-to-one Self-teaching!!!⭐

Requirements

pip install -r requirements.txt

Train

1. Prepare training data

  • 1.1 In order to realize the SR assisted branch, the input images of the network are downsampled from 1024 x 1024 size to 512 x 512 during the training process. In the test process, the image size is 512 x 512, which is consistent with the input of other algorithms compared.

  • 1.2 Download VEDAI data for our experiment from baiduyun (code: hvi4) or google drive. And the path of dataset is like that

SuperYOLO
├── dataset
│   ├── VEDAI
│   │   ├── images
│   │   ├── labels
│   │   ├── fold01.txt
│   │   ├── fold01test.txt
│   │   ├── fold02.txt
│   │   ├── .....
│   ├── VEDAI_1024
│   │   ├── images
│   │   ├── labels
  • 1.3 Note that we transform the labels of the dataset to be horizontal boxes by transform code. You shoud run transform.py before training the model. Change the PATH = './dataset/' and then run the code.

2. Begin to train multi images

python train.py --cfg models/SRyolo_MF.yaml --super --train_img_size 1024 --hr_input --data data/SRvedai.yaml --ch 64 --input_mode RGB+IR+MF

3. Begin to train RGB or IR images

python train.py --cfg models/SRyolo_noFocus_small.yaml --super --train_img_size 1024 --hr_input --data data/SRvedai.yaml --ch 3 --input_mode RGB
python train.py --cfg models/SRyolo_noFocus_small.yaml --super --train_img_size 1024 --hr_input --data data/SRvedai.yaml --ch 3 --input_mode IR

4. Begin to train multi images without SR branch

python train.py --cfg models/SRyolo_MF.yaml --train_img_size 512 --data data/SRvedai.yaml --ch 64 --input_mode RGB+IR+MF

5. Begin to train RGB or IR images without SR branch

python train.py --cfg models/SRyolo_noFocus_small.yaml --train_img_size 512 --data data/SRvedai.yaml --ch 3 --input_mode RGB
python train.py --cfg models/SRyolo_noFocus_small.yaml --train_img_size 512 --data data/SRvedai.yaml --ch 3 --input_mode IR

Test

1. Pretrained Checkpoints

You can use our pretrained checkpoints for test process. Download pre-trained model and put it in here.

2. Begin to test

python test.py --weights runs/train/exp/best.pt --input_mode RGB+IR+MF

Results

Method Modality Car Pickup Camping Truck Other Tractor Boat Van mAP50 Params. $\downarrow$ GFLOPs $\downarrow$
YOLOv3 IR 80.21 67.03 65.55 47.78 25.86 40.11 32.67 53.33 51.54 61.5351M 49.55
YOLOv3 RGB 83.06 71.54 69.14 59.30 48.93 67.34 33.48 55.67 61.06 61.5351M 49.55
YOLOv3 Multi 84.57 72.68 67.13 61.96 43.04 65.24 37.10 58.29 61.26 61.5354M 49.68
YOLOv4 IR 80.45 67.88 68.84 53.66 30.02 44.23 25.40 51.41 52.75 52.5082M 38.16
YOLOv4 RGB 83.73 73.43 71.17 59.09 51.66 65.86 34.28 60.32 62.43 52.5082M 38.16
YOLOv4 Multi 85.46 72.84 72.38 62.82 48.94 68.99 34.28 54.66 62.55 52.5085M 38.23
YOLOv5s IR 77.31 65.27 66.47 51.56 25.87 42.36 21.88 48.88 49.94 7.0728M 5.24
YOLOv5s RGB 80.07 68.01 66.12 51.52 45.76 64.38 21.62 40.93 54.82 7.0728M 5.24
YOLOv5s Multi 80.81 68.48 69.06 54.71 46.76 64.29 24.25 45.96 56.79 7.0739M 5.32
YOLOv5m IR 79.23 67.32 65.43 51.75 26.66 44.28 26.64 56.14 52.19 21.0659M 16.13
YOLOv5m RGB 81.14 70.26 65.53 53.98 46.78 66.69 36.24 49.87 58.80 21.0659M 16.13
YOLOv5m Multi 82.53 72.32 68.41 59.25 46.20 66.23 33.51 57.11 60.69 21.0677M 16.24
YOLOv5l IR 80.14 68.57 65.37 53.45 30.33 45.59 27.24 61.87 54.06 46.6383M 36.55
YOLOv5l RGB 81.36 71.70 68.25 57.45 45.77 70.68 35.89 55.42 60.81 46.6383M 36.55
YOLOv5l Multi 82.83 72.32 69.92 63.94 48.48 63.07 40.12 56.46 62.16 46.6046M 36.70
YOLOv5x IR 79.01 66.72 65.93 58.49 31.39 41.38 31.58 58.98 54.18 87.2458M 69.52
YOLOv5x RGB 81.66 72.23 68.29 59.07 48.47 66.01 39.15 61.85 62.09 87.2458M 69.52
YOLOv5x Multi 84.33 72.95 70.09 61.15 49.94 67.35 38.71 56.65 62.65 87.2487M 69.71
SuperYOLO IR 87.90 81.39 76.90 61.56 39.39 60.56 46.08 71.00 65.60 4.8256M 16.61
SuperYOLO RGB 90.30 82.66 76.69 68.55 53.86 79.48 58.08 70.30 72.49 4.8256M 16.61
SuperYOLO Multi 91.13 85.66 79.30 70.18 57.33 80.41 60.24 76.50 75.09 4.8451M 17.98

Time

2024.4 SuperYOLO won the Highly Cited Paper and Hot paper !!!!!

SuperYOLO

2023.2.14 open the train.py

2023.2.14 update the new fusion method (MF)

2023.2.16 update the test.py for visualization of detection results

Visualization of results

Acknowledgements

This code is built on YOLOv5 (PyTorch). We thank the authors for sharing the codes.

Licencing

Copyright (C) 2020 Jiaqing Zhang

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

Contact

If you have any questions, please contact me by email ([email protected]).

Citation

If our code is helpful to you, please cite:

@ARTICLE{10075555,
  author={Zhang, Jiaqing and Lei, Jie and Xie, Weiying and Fang, Zhenman and Li, Yunsong and Du, Qian},
  journal={IEEE Transactions on Geoscience and Remote Sensing}, 
  title={SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery}, 
  year={2023},
  volume={61},
  number={},
  pages={1-15},
  doi={10.1109/TGRS.2023.3258666}}

@article{zhang2023guided,
  title={Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-one Self-teaching},
  author={Zhang, Jiaqing and Lei, Jie and Xie, Weiying and Li, Yunsong and Yang, Geng and Jia, Xiuping},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  year={2023},
  publisher={IEEE}
}

Star History Chart