Skip to content

hyunyongPark/KDeep_Recsys_GraphRec

Repository files navigation

KDeepFashion Project - GraphRec

Original git Repo

GraphRec Model Architecture

Build Docker Image &

# 도커이미지 빌드
sudo docker build -t graphrec:v1 .
# 생성된 도커이미지 확인
sudo docker images
# 생성된 도커이미지 실행
sudo docker run graphrec:v1
  • Result
result

Requirements

# python version : 3.8.13
pip install -r requirements.txt 

cmd running

The install cmd is:

conda create -n your_prjname python=3.8
conda activate your_prjname
cd {The virtual environment directory that you created}
pip install -r requirements.txt
  • your_prjname : 생성할 가상환경 이름

학습 weight file 다운로드

아래의 링크를 통해 학습 weight 파일을 다운받습니다. 해당 파일은 kdeepfashion 데이터셋을 학습한 trained file입니다. 해당 weight 파일은 "./model_kfashion_add_externel" 에 위치하도록 합니다.

The testing cmd is:


python3 GraphRec-kfashion_Inference.py --RUN test

Result

training Plot
  • Our Model Performance Table
Embedding Dataset RMSE-Score
Graph train(9,373)/valid(1,042) 0.9711
Graph + User + Item train(9,373)/valid(1,042) 0.8357
Graph + User + Item train(20,123)/valid(2,516) 0.7813
  • Reference Result Tables in Paper
HR@10 Score
RMSE Score

References

About

2022 k-deep fashion GraphRec recommendation system

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published