Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add OLMo November 2024 #34551

Merged
merged 26 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
6e747c2
Add model skeletion with transformers-cli add-new-model-like
2015aroras Oct 31, 2024
a80ffd1
Convert config to modular, add rms_norm_eps, delete clip_qkv
2015aroras Oct 31, 2024
ffa794e
Convert model to modular, add RMSNorm
2015aroras Oct 31, 2024
75d38f0
Add flash attention with qk norm and no qkv clipping
2015aroras Oct 31, 2024
dbd880d
Add decoder layer with RMSNorm after attention/feedforward layers
2015aroras Oct 31, 2024
06c9c44
Add base and causal model
2015aroras Oct 31, 2024
b73f6d3
Add converter improvements from OLMo repo
2015aroras Oct 31, 2024
c8d9411
Update weight loading in OLMo to HF converter
2015aroras Oct 31, 2024
4e3da14
Set correct default for rms_norm_eps
2015aroras Oct 31, 2024
87d54bb
Set correct pipeline_model_mapping in test
2015aroras Oct 31, 2024
b7939d2
Run make fixup
2015aroras Oct 31, 2024
d39587f
Fix model type
2015aroras Nov 4, 2024
30c20f6
Re-run modular conversion
2015aroras Nov 4, 2024
cdce157
Manually set config docs to fix build errors
2015aroras Nov 4, 2024
3a9c61c
Convert olmo-1124 to olmo_1124 to fix flash attention docs errors
2015aroras Nov 4, 2024
949648e
Start updating tests
2015aroras Nov 4, 2024
0217f40
Update tests
2015aroras Nov 4, 2024
1bdaa05
Copy upstream test_eager_matches_sdpa_inference_1_bfloat16 changes to…
2015aroras Nov 6, 2024
0b1f2bf
Rename input_layernorm and post_attention_layernorm to reflect their …
2015aroras Nov 6, 2024
9e7c77d
Use correct tokenizer
2015aroras Nov 7, 2024
11f67eb
Remove test unsupported by GPT2 tokenizer
2015aroras Nov 7, 2024
0c2a264
Create GenerationConfig outside of from_pretrained call
2015aroras Nov 14, 2024
a22d936
Use simpler init file structure
2015aroras Nov 14, 2024
a3cca57
Add explicit __all__ to support simplified init
2015aroras Nov 14, 2024
82a75c2
Make safetensor serialization the default
2015aroras Nov 14, 2024
bfd2e63
Update OLMo November 2024 docs
2015aroras Nov 15, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -514,6 +514,8 @@
title: Nyströmformer
- local: model_doc/olmo
title: OLMo
- local: model_doc/olmo_1124
title: OLMo November 2024
- local: model_doc/olmoe
title: OLMoE
- local: model_doc/open-llama
Expand Down
1 change: 1 addition & 0 deletions docs/source/en/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Nougat](model_doc/nougat) | ✅ | ✅ | ✅ |
| [Nyströmformer](model_doc/nystromformer) | ✅ | ❌ | ❌ |
| [OLMo](model_doc/olmo) | ✅ | ❌ | ❌ |
| [OLMo November 2024](model_doc/olmo_1124) | ✅ | ❌ | ❌ |
| [OLMoE](model_doc/olmoe) | ✅ | ❌ | ❌ |
| [OmDet-Turbo](model_doc/omdet-turbo) | ✅ | ❌ | ❌ |
| [OneFormer](model_doc/oneformer) | ✅ | ❌ | ❌ |
Expand Down
46 changes: 46 additions & 0 deletions docs/source/en/model_doc/olmo_1124.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# OLMo November 2024

## Overview

The OLMo November 2024 model is a successor of the OLMo model, which was proposed in
[OLMo: Accelerating the Science of Language Models](https://arxiv.org/abs/2402.00838).

The architectural changes from the original OLMo model to this model are:

- RMSNorm is used instead of standard layer norm.
- Norm is applied to attention queries and keys.
- Norm is applied after attention/feedforward layers rather than before.
Comment on lines +26 to +28
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💘 super clear, love this!


This model was contributed by [shanearora](https://huggingface.co/shanearora).
The original code can be found [here](https://github.com/allenai/OLMo/tree/main/olmo).


## Olmo1124Config

[[autodoc]] Olmo1124Config

## Olmo1124Model

[[autodoc]] Olmo1124Model
- forward

## Olmo1124ForCausalLM

[[autodoc]] Olmo1124ForCausalLM
- forward
2 changes: 2 additions & 0 deletions docs/source/en/perf_infer_gpu_one.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ FlashAttention-2 is currently supported for the following architectures:
* [Nemotron](https://huggingface.co/docs/transformers/model_doc/nemotron)
* [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
* [OLMo November 2024](https://huggingface.co/docs/transformers/model_doc/olmo_1124#transformers.Olmo1124Model)
* [OLMoE](https://huggingface.co/docs/transformers/model_doc/olmoe#transformers.OlmoeModel)
* [OPT](https://huggingface.co/docs/transformers/model_doc/opt#transformers.OPTModel)
* [PaliGemma](https://huggingface.co/docs/transformers/model_doc/paligemma#transformers.PaliGemmaForConditionalGeneration)
Expand Down Expand Up @@ -260,6 +261,7 @@ For now, Transformers supports SDPA inference and training for the following arc
* [MusicGen Melody](https://huggingface.co/docs/transformers/model_doc/musicgen_melody#transformers.MusicgenMelodyModel)
* [NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)
* [OLMo](https://huggingface.co/docs/transformers/model_doc/olmo#transformers.OlmoModel)
* [OLMo November 2024](https://huggingface.co/docs/transformers/model_doc/olmo_1124#transformers.Olmo1124Model)
* [OLMoE](https://huggingface.co/docs/transformers/model_doc/olmoe#transformers.OlmoeModel)
* [OPT](https://huggingface.co/docs/transformers/en/model_doc/opt)
* [PaliGemma](https://huggingface.co/docs/transformers/model_doc/paligemma#transformers.PaliGemmaForConditionalGeneration)
Expand Down
14 changes: 14 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -620,6 +620,7 @@
"models.nougat": ["NougatProcessor"],
"models.nystromformer": ["NystromformerConfig"],
"models.olmo": ["OlmoConfig"],
"models.olmo_1124": ["Olmo1124Config"],
"models.olmoe": ["OlmoeConfig"],
"models.omdet_turbo": [
"OmDetTurboConfig",
Expand Down Expand Up @@ -2919,6 +2920,13 @@
"OlmoPreTrainedModel",
]
)
_import_structure["models.olmo_1124"].extend(
[
"Olmo1124ForCausalLM",
"Olmo1124Model",
"Olmo1124PreTrainedModel",
]
)
_import_structure["models.olmoe"].extend(
[
"OlmoeForCausalLM",
Expand Down Expand Up @@ -5506,6 +5514,7 @@
NystromformerConfig,
)
from .models.olmo import OlmoConfig
from .models.olmo_1124 import Olmo1124Config
from .models.olmoe import OlmoeConfig
from .models.omdet_turbo import (
OmDetTurboConfig,
Expand Down Expand Up @@ -7523,6 +7532,11 @@
OlmoModel,
OlmoPreTrainedModel,
)
from .models.olmo_1124 import (
Olmo1124ForCausalLM,
Olmo1124Model,
Olmo1124PreTrainedModel,
)
from .models.olmoe import (
OlmoeForCausalLM,
OlmoeModel,
Expand Down
1 change: 1 addition & 0 deletions src/transformers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,7 @@
nougat,
nystromformer,
olmo,
olmo_1124,
olmoe,
omdet_turbo,
oneformer,
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,7 @@
("nougat", "VisionEncoderDecoderConfig"),
("nystromformer", "NystromformerConfig"),
("olmo", "OlmoConfig"),
("olmo_1124", "Olmo1124Config"),
("olmoe", "OlmoeConfig"),
("omdet-turbo", "OmDetTurboConfig"),
("oneformer", "OneFormerConfig"),
Expand Down Expand Up @@ -510,6 +511,7 @@
("nougat", "Nougat"),
("nystromformer", "Nyströmformer"),
("olmo", "OLMo"),
("olmo_1124", "OLMo November 2024"),
("olmoe", "OLMoE"),
("omdet-turbo", "OmDet-Turbo"),
("oneformer", "OneFormer"),
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,6 +184,7 @@
("nllb-moe", "NllbMoeModel"),
("nystromformer", "NystromformerModel"),
("olmo", "OlmoModel"),
("olmo_1124", "Olmo1124Model"),
("olmoe", "OlmoeModel"),
("omdet-turbo", "OmDetTurboForObjectDetection"),
("oneformer", "OneFormerModel"),
Expand Down Expand Up @@ -516,6 +517,7 @@
("mvp", "MvpForCausalLM"),
("nemotron", "NemotronForCausalLM"),
("olmo", "OlmoForCausalLM"),
("olmo_1124", "Olmo1124ForCausalLM"),
("olmoe", "OlmoeForCausalLM"),
("open-llama", "OpenLlamaForCausalLM"),
("openai-gpt", "OpenAIGPTLMHeadModel"),
Expand Down
1 change: 1 addition & 0 deletions src/transformers/models/auto/tokenization_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -348,6 +348,7 @@
),
),
("olmo", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("olmo_1124", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
("olmoe", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)),
(
"omdet-turbo",
Expand Down
27 changes: 27 additions & 0 deletions src/transformers/models/olmo_1124/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure


if TYPE_CHECKING:
from .configuration_olmo_1124 import *
from .modeling_olmo_1124 import *
else:
import sys

_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
166 changes: 166 additions & 0 deletions src/transformers/models/olmo_1124/configuration_olmo_1124.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/olmo_1124/modular_olmo_1124.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_olmo_1124.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨

from ...configuration_utils import PretrainedConfig


class Olmo1124Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Olmo1124Model`]. It is used to instantiate an OLMo November 2024
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/Olmo1124-7B-hf](https://huggingface.co/allenai/Olmo1124-7B-hf).

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the Olmo1124 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Olmo1124Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.

```python
>>> from transformers import Olmo1124Model, Olmo1124Config

>>> # Initializing a Olmo November 2024 7B style configuration
>>> configuration = Olmo1124Config()

>>> # Initializing a model from the Olmo November 2024 7B style configuration
>>> model = Olmo1124Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```
"""

model_type = "olmo_1124"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-5,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout

self.rms_norm_eps = rms_norm_eps

def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return

if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")


__all__ = ["Olmo1124Config"]
Loading
Loading