-
Notifications
You must be signed in to change notification settings - Fork 27.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[core
] Integrate Flash attention 2 in most used models
#25598
[core
] Integrate Flash attention 2 in most used models
#25598
Conversation
PoC
/ core
] Attempt to integration Flash attn 2 in most used modelsPoC
/ core
] Attempt to integrate Flash attn 2 in most used models
I think attempting to plug Hazy-flash in transformers and properly benchmarking against vanilla transformers and against BetterTransformer is a very good thing to possibly motivate:
However, there should in my opinion be a serious internal discussion about what goes natively in transformers and whatnot when it comes to hardware optimization. Hazy-flash relies heavily on CUTLASS, that can not be transpiled for AMD devices. There is this fork of flash for RoCm. If we are to integrate such optimizations in transformers natively, would we be comfortable doing so for a variety of hardware providers? In my opinion, an approach a la BetterTransformer replacing modules or methods can make sense as well. The issue with the code injection approach is that it can make it more difficult to combine several injections (for example BT + bitsandbytes - though I hear they currently work smoothly together). Anyway, very keen to help to benchmark! |
The documentation is not available anymore as the PR was closed or merged. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just my two cents, but the changes here make the attention code harder to read which goes against the philosophy of Transformers. I think it would be better to create a LlamaFlashAttention
module which would have the necessary changes of code and then you switch at init or replace later LlamaAttention
layers by LlamaFlashAttention
(which would have the same weights so easily interchangeable). This way the code stays readable because it's easier for someone trying to understand to skip one module they are not interested in than skim through if/else blocks.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hello Younes, thanks a lot for taking the initiative to support Flash Attention V2 in transformers. I've left a couple of comments. I agree with Sylvain on a separate class for simplification.
@@ -321,43 +335,63 @@ def forward( | |||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |||
|
|||
if self._is_using_flash_attn_2: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This should be after the past_key_values
logic below
attn_output = torch.matmul(attn_weights, value_states) | ||
attn_output = attn_output.transpose(1, 2).contiguous() | ||
else: | ||
# TODO: llama does not have dropout in the config?? |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, I was surprised to see that Llama doesn't use dropout at all. It needs to be added as the training runs currently might be overfitting
for inner_module_name, inner_module in module.named_modules(): | ||
setattr(new_module, inner_module_name, inner_module) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this is the place where we get the original weigts to the new module?
with torch.device(torch_device): | ||
new_module = target_class(module.config) | ||
|
||
for inner_module_name, inner_module in module.named_modules(): |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
should use module.named_children()
instead of module.named_modules()
named_modules()
will return self module with blank name- the function is already recursively, should only check children module instead of all. (but it will have same result in llama)
🚀 Like the new design a lot better |
core
] Attempt to integrate Flash attn 2 in most used modelscore
] Integrate Flash attn 2 in most used models
core
] Integrate Flash attn 2 in most used modelscore
] Integrate Flash attention 2 in most used models
dropout_rate = 0.0 # if not self.training else self.attn_dropout | ||
|
||
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | ||
# therefore the input hidden states gets silently casted in float32. Hence, we need |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The hidden states are cast in float32 for a fp32 layer norm weight here:
return self.weight * hidden_states.to(input_dtype) |
How about casting the output of the layer norm in the same type as the input tensor?
return (self.weight * hidden_states).to(input_dtype)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this would work too, let me try to run few experiments and get back to you
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This PR: https://github.com/huggingface/transformers/pull/24891/files#diff-06392bad3b9e97be9ade60d4ac46f73b6809388f4d507c2ba1384ab872711c51 re-introduced the bug that was fixed in #23535
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this was intended but I am not sure, I prefer to wait for @ArthurZucker to have a second opinion here
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is just the 1 to 1 function used in Llama origiinal code
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Consider we have fp16 layer norm weight:
Above: (fp16 * fp16) -> fp16 Below: (fp16 * fp32) -> fp16
If we have fp32 layer norm weight:
Above: (fp32 * fp16) -> fp32 Below: (fp32 * fp32) -> fp16
Is this right?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It is, but if you run the following:
import torch
hidden_states = torch.rand(4096, 4096, dtype = torch.float32)
weights = torch.rand(4096, dtype = torch.float32)
for i in [1e-2,1e-3,1e-4,1e-5]:
try:
torch.testing.assert_close(weights * hidden_states, (weights * hidden_states.half()), rtol=i, atol=i)
except:
print(i, "found diff in float32")
try:
torch.testing.assert_close((weights * hidden_states).half(), (weights * hidden_states.half()).half(), rtol=i, atol=i)
except :
print(i, "found diff in float16")
you'll see that neither in float16 nor in float32 does this pass for 1e-4
and 1e-5
which means potential propagation. When porting the model this was an issue. It's mathematically not the same computation.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I get it, you mean that if we cast both weights and hidden states in fp16 precision, there will be a large divergence in the results which is unacceptable, so we can only cast either weights or hidden states in fp16 precision.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@younesbelkada Sorry for disturbing you again, should we use the Bfloat16 data type in bf16 training? If I want to use 4-bit QLoRA in bf16 mixed precision training.
transformers/src/transformers/models/llama/modeling_llama.py
Lines 485 to 487 in 3ca18d6
query_states = query_states.to(torch.float16) | |
key_states = key_states.to(torch.float16) | |
value_states = value_states.to(torch.float16) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
no worries;
Yes I think that it makes sense, it might be challenging to retrieve the correct dtype, let me dig into that and look into it. Would you mind opening a new ticket for it and tag me there? 🙏 Thanks!
…e#25598) * v1 * oops * working v1 * fixup * add some TODOs * fixup * padding support + try with module replacement * nit * alternative design * oops * add `use_cache` support for llama * v1 falcon * nit * a bit of refactor * nit * nits nits * add v1 padding support falcon (even though it seemed to work before) * nit * falcon works * fixup * v1 tests * nit * fix generation llama flash * update tests * fix tests + nits * fix copies * fix nit * test- padding mask * stype * add more mem efficient support * Update src/transformers/modeling_utils.py Co-authored-by: Patrick von Platen <[email protected]> * fixup * nit * fixup * remove it from config when saving * fixup * revert docstring * add more checks * use values * oops * new version * fixup * add same trick for falcon * nit * add another test * change tests * fix issues with GC and also falcon * fixup * oops * Update src/transformers/models/falcon/modeling_falcon.py Co-authored-by: Arthur <[email protected]> * add init_rope * updates * fix copies * fixup * fixup * more clarification * fixup * right padding tests * add docs * add FA in docker image * more clarifications * add some figures * add todo * rectify comment * Change to FA2 * Update docs/source/en/perf_infer_gpu_one.md Co-authored-by: Arthur <[email protected]> * split in two lines * change test name * add more tests * some clean up * remove `rearrange` deps * add more docs * revert changes on dockerfile * Revert "revert changes on dockerfile" This reverts commit 8d72a66. * revert changes on dockerfile * Apply suggestions from code review Co-authored-by: Lysandre Debut <[email protected]> * address some comments * docs * use inheritance * Update src/transformers/testing_utils.py Co-authored-by: Lysandre Debut <[email protected]> * fixup * Apply suggestions from code review Co-authored-by: Arthur <[email protected]> * Update src/transformers/modeling_utils.py * final comments * clean up * style * add cast + warning for PEFT models * fixup --------- Co-authored-by: Felix Marty <[email protected]> Co-authored-by: Patrick von Platen <[email protected]> Co-authored-by: Arthur <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
This PR broke my custom attention module in AutoAWQ because of the introduction of a new |
causal=True, | ||
) | ||
|
||
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sorry to add comment here.
But I found that the indices_q
cause error tensors used as indices must be long, byte or bool tensors
@younesbelkada
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi @congchan can you please share a reproducible snippet
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi I am using HF trainer to train llama2-13B, I think it is packages version issues
transformers>=4.34.0 accelerate==0.20.3, flash_attn==2.0.9
To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. huggingface/transformers#25598
To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. huggingface/transformers#25598
To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. huggingface/transformers#25598
…e#25598) * v1 * oops * working v1 * fixup * add some TODOs * fixup * padding support + try with module replacement * nit * alternative design * oops * add `use_cache` support for llama * v1 falcon * nit * a bit of refactor * nit * nits nits * add v1 padding support falcon (even though it seemed to work before) * nit * falcon works * fixup * v1 tests * nit * fix generation llama flash * update tests * fix tests + nits * fix copies * fix nit * test- padding mask * stype * add more mem efficient support * Update src/transformers/modeling_utils.py Co-authored-by: Patrick von Platen <[email protected]> * fixup * nit * fixup * remove it from config when saving * fixup * revert docstring * add more checks * use values * oops * new version * fixup * add same trick for falcon * nit * add another test * change tests * fix issues with GC and also falcon * fixup * oops * Update src/transformers/models/falcon/modeling_falcon.py Co-authored-by: Arthur <[email protected]> * add init_rope * updates * fix copies * fixup * fixup * more clarification * fixup * right padding tests * add docs * add FA in docker image * more clarifications * add some figures * add todo * rectify comment * Change to FA2 * Update docs/source/en/perf_infer_gpu_one.md Co-authored-by: Arthur <[email protected]> * split in two lines * change test name * add more tests * some clean up * remove `rearrange` deps * add more docs * revert changes on dockerfile * Revert "revert changes on dockerfile" This reverts commit 8d72a66. * revert changes on dockerfile * Apply suggestions from code review Co-authored-by: Lysandre Debut <[email protected]> * address some comments * docs * use inheritance * Update src/transformers/testing_utils.py Co-authored-by: Lysandre Debut <[email protected]> * fixup * Apply suggestions from code review Co-authored-by: Arthur <[email protected]> * Update src/transformers/modeling_utils.py * final comments * clean up * style * add cast + warning for PEFT models * fixup --------- Co-authored-by: Felix Marty <[email protected]> Co-authored-by: Patrick von Platen <[email protected]> Co-authored-by: Arthur <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. huggingface/transformers#25598
* [colossalai]fix typo * [inference] Add smmoothquant for llama (#4904) * [inference] add int8 rotary embedding kernel for smoothquant (#4843) * [inference] add smoothquant llama attention (#4850) * add smoothquant llama attention * remove uselss code * remove useless code * fix import error * rename file name * [inference] add silu linear fusion for smoothquant llama mlp (#4853) * add silu linear * update skip condition * catch smoothquant cuda lib exception * prcocess exception for tests * [inference] add llama mlp for smoothquant (#4854) * add llama mlp for smoothquant * fix down out scale * remove duplicate lines * add llama mlp check * delete useless code * [inference] add smoothquant llama (#4861) * add smoothquant llama * fix attention accuracy * fix accuracy * add kv cache and save pretrained * refactor example * delete smooth * refactor code * [inference] add smooth function and delete useless code for smoothquant (#4895) * add smooth function and delete useless code * update datasets * remove duplicate import * delete useless file * refactor codes (#4902) * rafactor code * add license * add torch-int and smoothquant license * Update flash_attention_patch.py To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. huggingface/transformers#25598 * [kernel] support pure fp16 for cpu adam and update gemini optim tests (#4921) * [kernel] support pure fp16 for cpu adam (#4896) * [kernel] fix cpu adam kernel for pure fp16 and update tests (#4919) * [kernel] fix cpu adam * [test] update gemini optim test * [format] applied code formatting on changed files in pull request 4908 (#4918) Co-authored-by: github-actions <[email protected]> * [gemini] support gradient accumulation (#4869) * add test * fix no_sync bug in low level zero plugin * fix test * add argument for grad accum * add grad accum in backward hook for gemini * finish implementation, rewrite tests * fix test * skip stuck model in low level zero test * update doc * optimize communication & fix gradient checkpoint * modify doc * cleaning codes * update cpu adam fp16 case * [hotfix] fix torch 2.0 compatibility (#4936) * [hotfix] fix launch * [test] fix test gemini optim * [shardformer] fix vit * [test] add no master test for low level zero plugin (#4934) * [format] applied code formatting on changed files in pull request 4820 (#4886) Co-authored-by: github-actions <[email protected]> * [nfc] fix some typo with colossalai/ docs/ etc. (#4920) * [Refactor] Integrated some lightllm kernels into token-attention (#4946) * add some req for inference * clean codes * add codes * add some lightllm deps * clean codes * hello * delete rms files * add some comments * add comments * add doc * add lightllm deps * add lightllm cahtglm2 kernels * add lightllm cahtglm2 kernels * replace rotary embedding with lightllm kernel * add some commnets * add some comments * add some comments * add * replace fwd kernel att1 * fix a arg * add * add * fix token attention * add some comments * clean codes * modify comments * fix readme * fix bug * fix bug --------- Co-authored-by: cuiqing.li <[email protected]> Co-authored-by: CjhHa1 <[email protected]> * [test] merge old components to test to model zoo (#4945) * [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test * [inference] add reference and fix some bugs (#4937) * add reference and fix some bugs * update gptq init --------- Co-authored-by: Xu Kai <[email protected]> * [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <[email protected]> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commit fbf3c09. * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced140. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commit fced140. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced140. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <[email protected]> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <[email protected]> Co-authored-by: Cuiqing Li <[email protected]> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <[email protected]> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <[email protected]> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <[email protected]> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit 479900c. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp * fix fix fix * update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO * support fused layernorm support fused layernorm support fused layernorm * update fusedlayernorm update fusedlayernorm update fusedlayernorm * add sequence parallel to gemini add sequence parallel to gemini * fix * fix comments fix comments fix comments * fix * fix t5 * clear cache * fix * activate ci * activate ci * fix * fix * fix * fix * revert * modify tp gather method modify tp gather method modify tp gather method modify tp gather method * fix test --------- Co-authored-by: Xu Kai <[email protected]> Co-authored-by: Zian(Andy) Zheng <[email protected]> Co-authored-by: Hongxin Liu <[email protected]> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <[email protected]> Co-authored-by: Baizhou Zhang <[email protected]> Co-authored-by: Zhongkai Zhao <[email protected]> Co-authored-by: digger yu <[email protected]> Co-authored-by: Cuiqing Li <[email protected]> Co-authored-by: cuiqing.li <[email protected]> Co-authored-by: CjhHa1 <[email protected]> Co-authored-by: Xu Kai <[email protected]> Co-authored-by: Jianghai <[email protected]> Co-authored-by: Bin Jia <[email protected]> Co-authored-by: アマデウス <[email protected]> Co-authored-by: yuehuayingxueluo <[email protected]> Co-authored-by: Yuanchen <[email protected]> Co-authored-by: Xu Yuanchen <[email protected]> Co-authored-by: littsk <[email protected]> Co-authored-by: ppt0011 <[email protected]>
To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. huggingface/transformers#25598
…e#25598) * v1 * oops * working v1 * fixup * add some TODOs * fixup * padding support + try with module replacement * nit * alternative design * oops * add `use_cache` support for llama * v1 falcon * nit * a bit of refactor * nit * nits nits * add v1 padding support falcon (even though it seemed to work before) * nit * falcon works * fixup * v1 tests * nit * fix generation llama flash * update tests * fix tests + nits * fix copies * fix nit * test- padding mask * stype * add more mem efficient support * Update src/transformers/modeling_utils.py Co-authored-by: Patrick von Platen <[email protected]> * fixup * nit * fixup * remove it from config when saving * fixup * revert docstring * add more checks * use values * oops * new version * fixup * add same trick for falcon * nit * add another test * change tests * fix issues with GC and also falcon * fixup * oops * Update src/transformers/models/falcon/modeling_falcon.py Co-authored-by: Arthur <[email protected]> * add init_rope * updates * fix copies * fixup * fixup * more clarification * fixup * right padding tests * add docs * add FA in docker image * more clarifications * add some figures * add todo * rectify comment * Change to FA2 * Update docs/source/en/perf_infer_gpu_one.md Co-authored-by: Arthur <[email protected]> * split in two lines * change test name * add more tests * some clean up * remove `rearrange` deps * add more docs * revert changes on dockerfile * Revert "revert changes on dockerfile" This reverts commit 8d72a66. * revert changes on dockerfile * Apply suggestions from code review Co-authored-by: Lysandre Debut <[email protected]> * address some comments * docs * use inheritance * Update src/transformers/testing_utils.py Co-authored-by: Lysandre Debut <[email protected]> * fixup * Apply suggestions from code review Co-authored-by: Arthur <[email protected]> * Update src/transformers/modeling_utils.py * final comments * clean up * style * add cast + warning for PEFT models * fixup --------- Co-authored-by: Felix Marty <[email protected]> Co-authored-by: Patrick von Platen <[email protected]> Co-authored-by: Arthur <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
* [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <[email protected]> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commit fbf3c09e673794ed18c91d4bab1a7dfea052e95a. * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <[email protected]> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <[email protected]> Co-authored-by: Cuiqing Li <[email protected]> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <[email protected]> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <[email protected]> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <[email protected]> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit 479900c1398637310abf92eefa3cd168038ea02f. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [moe] merge moe into main (#4978) * update moe module * support openmoe * [hotfix] fix grad accumulation plus clipping for gemini (#5002) * [hotfix] Add layer norm gradients all-reduce for sequence parallel (#4926) * [hotfix] Add layer norm gradients all-reduce for sequence parallel. (#4915) * Add layer norm gradients all-reduce for sequence parallel. * skip pipeline inference test * [hotfix] fixing polices of sequence parallel (#4922) * Add layer norm gradients all-reduce for sequence parallel. * fix parameter passing when calling get_autopolicy --------- Co-authored-by: littsk <[email protected]> * Hotfix/add grad all reduce for sequence parallel (#4927) * Add layer norm gradients all-reduce for sequence parallel. * fix parameter passing when calling get_autopolicy * fix bug using wrong variables --------- Co-authored-by: littsk <[email protected]> * fix policy initialization * fix bloom and chatglm policices * polish code of handling layernorm * fix moe module * polish code of class initializing --------- Co-authored-by: Zhongkai Zhao <[email protected]> * [format] applied code formatting on changed files in pull request 4926 (#5007) Co-authored-by: github-actions <[email protected]> * [Inference] Fix bug in ChatGLM2 Tensor Parallelism (#5014) * fix bug * fix * fix multiquery * fix multiquery --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [misc] add code owners (#5024) * [moe] support optimizer checkpoint (#5015) * Refactor MoE Manager setup method * unshard optim ckpt * optim io * update transformer version * update requirements * update ckpt * update ckpt * update ckpt * fix engine * fix engine * Support mtbench (#5025) Co-authored-by: Xu Yuanchen <[email protected]> * [moe]: fix ep/tp tests, add hierarchical all2all (#4982) * fix: add warning for EP different behavior * fix: use shard_data in ep & tp model * to: add used_capacity * fix: fix router test * feat: add create_ep_node_group * feat: add create_ep_hierarchical_group fn * feat: add HierarchicalAllToAll * test: add hierarchical all2all test * fix: fix test errors * fix: simplify create_ep_hierarchical_group * fix: add hierarchical_alltoall arg * fix: fix environ typo * revert: revert process mesh order * to: add todo mark * fix: skip hierarchical_comm if torch < 1.13.1 * [shardformer] Fix serialization error with Tensor Parallel state saving (#5018) * Fix serialization error with Tensor Parallel state saving * Refactor state_dict CPU transfer using tree_map * [gemini] gemini support tensor parallelism. (#4942) * [colossalai]fix typo * [inference] Add smmoothquant for llama (#4904) * [inference] add int8 rotary embedding kernel for smoothquant (#4843) * [inference] add smoothquant llama attention (#4850) * add smoothquant llama attention * remove uselss code * remove useless code * fix import error * rename file name * [inference] add silu linear fusion for smoothquant llama mlp (#4853) * add silu linear * update skip condition * catch smoothquant cuda lib exception * prcocess exception for tests * [inference] add llama mlp for smoothquant (#4854) * add llama mlp for smoothquant * fix down out scale * remove duplicate lines * add llama mlp check * delete useless code * [inference] add smoothquant llama (#4861) * add smoothquant llama * fix attention accuracy * fix accuracy * add kv cache and save pretrained * refactor example * delete smooth * refactor code * [inference] add smooth function and delete useless code for smoothquant (#4895) * add smooth function and delete useless code * update datasets * remove duplicate import * delete useless file * refactor codes (#4902) * rafactor code * add license * add torch-int and smoothquant license * Update flash_attention_patch.py To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. https://github.com/huggingface/transformers/pull/25598 * [kernel] support pure fp16 for cpu adam and update gemini optim tests (#4921) * [kernel] support pure fp16 for cpu adam (#4896) * [kernel] fix cpu adam kernel for pure fp16 and update tests (#4919) * [kernel] fix cpu adam * [test] update gemini optim test * [format] applied code formatting on changed files in pull request 4908 (#4918) Co-authored-by: github-actions <[email protected]> * [gemini] support gradient accumulation (#4869) * add test * fix no_sync bug in low level zero plugin * fix test * add argument for grad accum * add grad accum in backward hook for gemini * finish implementation, rewrite tests * fix test * skip stuck model in low level zero test * update doc * optimize communication & fix gradient checkpoint * modify doc * cleaning codes * update cpu adam fp16 case * [hotfix] fix torch 2.0 compatibility (#4936) * [hotfix] fix launch * [test] fix test gemini optim * [shardformer] fix vit * [test] add no master test for low level zero plugin (#4934) * [format] applied code formatting on changed files in pull request 4820 (#4886) Co-authored-by: github-actions <[email protected]> * [nfc] fix some typo with colossalai/ docs/ etc. (#4920) * [Refactor] Integrated some lightllm kernels into token-attention (#4946) * add some req for inference * clean codes * add codes * add some lightllm deps * clean codes * hello * delete rms files * add some comments * add comments * add doc * add lightllm deps * add lightllm cahtglm2 kernels * add lightllm cahtglm2 kernels * replace rotary embedding with lightllm kernel * add some commnets * add some comments * add some comments * add * replace fwd kernel att1 * fix a arg * add * add * fix token attention * add some comments * clean codes * modify comments * fix readme * fix bug * fix bug --------- Co-authored-by: cuiqing.li <[email protected]> Co-authored-by: CjhHa1 <[email protected]> * [test] merge old components to test to model zoo (#4945) * [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test * [inference] add reference and fix some bugs (#4937) * add reference and fix some bugs * update gptq init --------- Co-authored-by: Xu Kai <[email protected]> * [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <[email protected]> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commit fbf3c09e673794ed18c91d4bab1a7dfea052e95a. * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <[email protected]> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <[email protected]> Co-authored-by: Cuiqing Li <[email protected]> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <[email protected]> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <[email protected]> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <[email protected]> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit 479900c1398637310abf92eefa3cd168038ea02f. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp * fix fix fix * update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO * support fused layernorm support fused layernorm support fused layernorm * update fusedlayernorm update fusedlayernorm update fusedlayernorm * add sequence parallel to gemini add sequence parallel to gemini * fix * fix comments fix comments fix comments * fix * fix t5 * clear cache * fix * activate ci * activate ci * fix * fix * fix * fix * revert * modify tp gather method modify tp gather method modify tp gather method modify tp gather method * fix test --------- Co-authored-by: Xu Kai <[email protected]> Co-authored-by: Zian(Andy) Zheng <[email protected]> Co-authored-by: Hongxin Liu <[email protected]> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <[email protected]> Co-authored-by: Baizhou Zhang <[email protected]> Co-authored-by: Zhongkai Zhao <[email protected]> Co-authored-by: digger yu <[email protected]> Co-authored-by: Cuiqing Li <[email protected]> Co-authored-by: cuiqing.li <[email protected]> Co-authored-by: CjhHa1 <[email protected]> Co-authored-by: Xu Kai <[email protected]> Co-authored-by: Jianghai <[email protected]> Co-authored-by: Bin Jia <[email protected]> Co-authored-by: アマデウス <[email protected]> Co-authored-by: yuehuayingxueluo <[email protected]> Co-authored-by: Yuanchen <[email protected]> Co-authored-by: Xu Yuanchen <[email protected]> Co-authored-by: littsk <[email protected]> Co-authored-by: ppt0011 <[email protected]> * [hotfix] Suport extra_kwargs in ShardConfig (#5031) * [refactor]: replace inference args with extra_kwargs in ShardConfig * modify shardconfig * polish code * fix policy bug in llama * fix bug in auto policy * remove setattr in ShardConfig * fix wrong EOS token in ColossalChat * [Kernels]Update triton kernels into 2.1.0 (#5046) * update flash-context-attention * adding kernels * fix * reset * add build script * add building process * add llama2 exmaple * add colossal-llama2 test * clean * fall back test setting * fix test file * clean * clean * clean --------- Co-authored-by: cuiqing.li <[email protected]> * [pipeline,shardformer] Fix p2p efficiency in pipeline, allow skipping loading weight not in weight_map when `strict=False`, fix llama flash attention forward, add flop estimation by megatron in llama benchmark (#5017) * Use p2p * Cannot bidirectonal send p2p * Refactor tensor creation and serialization in P2P communication * Fix llama forward args in flash attention * Add flop estimate from megatron * Support loading weight not in weight_map when strict=False in hybrid_parallel * Use send_forward_recv_backward, etc in 1f1b * Use dataclass for metdata Remove torch.cuda.synchronize() as suggested * Add comment about the torch.cuda.synchronize for potential error * Typo * Update hybrid_parallel_checkpoint_io.py * Update p2p.py * Update one_f_one_b.py * Update p2p.py --------- Co-authored-by: flybird11111 <[email protected]> * [gemini] gemini support extra-dp (#5043) * support ddp * fix * fix * fix fix * support ddp * fix * fix * fix fix * simplify tests * fix * fix * fix fix fix * fix * [shardformer] fix llama error when transformers upgraded. (#5055) * fix-llama * Update llama.py * [hotfix]: modify create_ep_hierarchical_group and add test (#5032) * feat: modify create_ep_hierarchical_group args * test: add ep tests * fix: remove get_process_group_ranks * fix: fix src_rank * [exampe] fix llama example' loss error when using gemini plugin (#5060) fix llama example * [inference] Refactor inference architecture (#5057) * [inference] support only TP (#4998) * support only tp * enable tp * add support for bloom (#5008) * [refactor] refactor gptq and smoothquant llama (#5012) * refactor gptq and smoothquant llama * fix import error * fix linear import torch-int * fix smoothquant llama import error * fix import accelerate error * fix bug * fix import smooth cuda * fix smoothcuda * [Inference Refactor] Merge chatglm2 with pp and tp (#5023) merge chatglm with pp and tp * [Refactor] remove useless inference code (#5022) * remove useless code * fix quant model * fix test import bug * mv original inference legacy * fix chatglm2 * [Refactor] refactor policy search and quant type controlling in inference (#5035) * [Refactor] refactor policy search and quant type controling in inference * [inference] update readme (#5051) * update readme * update readme * fix architecture * fix table * fix table * [inference] udpate example (#5053) * udpate example * fix run.sh * fix rebase bug * fix some errors * update readme * add some features * update interface * update readme * update benchmark * add requirements-infer --------- Co-authored-by: Bin Jia <[email protected]> Co-authored-by: Zhongkai Zhao <[email protected]> * [Kernels]added flash-decoidng of triton (#5063) * added flash-decoidng of triton based on lightllm kernel * add req * clean * clean * delete build.sh --------- Co-authored-by: cuiqing.li <[email protected]> * [misc] remove outdated submodule (#5070) * [npu] add npu support for gemini and zero (#5067) * [npu] setup device utils (#5047) * [npu] add npu device support * [npu] support low level zero * [test] update npu zero plugin test * [hotfix] fix import * [test] recover tests * [npu] gemini support npu (#5052) * [npu] refactor device utils * [gemini] support npu * [example] llama2+gemini support npu * [kernel] add arm cpu adam kernel (#5065) * [kernel] add arm cpu adam * [optim] update adam optimizer * [kernel] arm cpu adam remove bf16 support * [hotfix/hybridengine] fix bug when tp*pp size = 1 (#5069) * [inference] update examples and engine (#5073) * update examples and engine * fix choices * update example * [format] applied code formatting on changed files in pull request 5067 (#5072) Co-authored-by: github-actions <[email protected]> * [hotfix/hybridengine] Fix init model with random parameters in benchmark (#5074) * fix init model with random parameters * fix example * [inference] refactor examples and fix schedule (#5077) * [setup] refactor infer setup * [hotfix] fix infenrece behavior on 1 1 gpu * [exmaple] refactor inference examples * fix thrust-transform-reduce error (#5078) * [nfc] fix typo in docs/ (#4972) * [nfc] fix typo and author name (#5089) * [gemini]fix gemini optimzer, saving Shardformer in Gemini got list assignment index out of range (#5085) * [Hotfix] Fix model policy matching strategy in ShardFormer (#5064) * hotfix/Fix get model policy strategy in ShardFormer * fix bug in auto policy * [shardformer]fix flash attention, when mask is casual, just don't unpad it (#5084) * fix flash attn * fix fix * [npu] add npu support for hybrid plugin and llama (#5090) * llama 3d * update * fix autocast * [Feature] Add document retrieval QA (#5020) * add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <[email protected]> Co-authored-by: Orion-Zheng <[email protected]> Co-authored-by: Zian(Andy) Zheng <[email protected]> Co-authored-by: Orion-Zheng <[email protected]> * remove duplicate import (#5100) * fix typo change lazy_iniy to lazy_init (#5099) * [nfc] fix typo change directoty to directory (#5111) * [FEATURE] Add Safety Eval Datasets to ColossalEval (#5095) * add safetybench and cvalues(responsibility) eval dataset * Modify code according to review suggestions --------- Co-authored-by: Orion-Zheng <[email protected]> * [hotfix] fixed memory usage of shardformer module replacement (#5122) * [shardformer]: support gpt-j, falcon, Mistral and add interleaved pipeline for bert (#5088) * [shardformer] implement policy for all GPT-J models and test * [shardformer] support interleaved pipeline parallel for bert finetune * [shardformer] shardformer support falcon (#4883) * [shardformer]: fix interleaved pipeline for bert model (#5048) * [hotfix]: disable seq parallel for gptj and falcon, and polish code (#5093) * Add Mistral support for Shardformer (#5103) * [shardformer] add tests to mistral (#5105) --------- Co-authored-by: Pengtai Xu <[email protected]> Co-authored-by: ppt0011 <[email protected]> Co-authored-by: flybird11111 <[email protected]> Co-authored-by: eric8607242 <[email protected]> * [doc] add moe news (#5128) * [doc] add moe news * [doc] add moe news * [doc] add moe news * [doc] updated paper citation (#5131) * fix typo change JOSNL TO JSONL etc. (#5116) * [format] applied code formatting on changed files in pull request 5088 (#5127) Co-authored-by: github-actions <[email protected]> * [format] applied code formatting on changed files in pull request 5124 (#5125) Co-authored-by: github-actions <[email protected]> * [format] applied code formatting on changed files in pull request 5115 (#5118) Co-authored-by: github-actions <[email protected]> * [accelerator] init the accelerator module (#5129) * [accelerator] init the accelerator module * polish code * polish code * polish code * polish code * [npu] support triangle attention for llama (#5130) * update fused attn * update spda * tri attn * update triangle * import * fix * fix * [plugin]fix 3d checkpoint load when booster boost without optimizer. (#5135) * fix 3d checkpoint load when booster boost without optimizer fix 3d checkpoint load when booster boost without optimizer * test ci * revert ci * fix fix * [ColossalQA] refactor server and webui & add new feature (#5138) * refactor server and webui & add new feature * add requirements * modify readme and ui * [doc] fix colossalqa document (#5146) * fix doc * modify doc * fix (#5158) fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <[email protected]> Co-authored-by: Camille Zhong <[email protected]> * [gemini] hotfix NaN loss while using Gemini + tensor_parallel (#5150) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * [colossalqa] fix pangu api (#5170) * fix pangu api * add comment * [ColossalEval] Support GSM, Data Leakage Evaluation and Tensor Parallel (#5169) * Support GSM, Data Leakage Evaluation and Tensor Parallel * remove redundant code and update inference.py in examples/gpt_evaluation --------- Co-authored-by: Xu Yuanchen <[email protected]> * [shardformer] llama support DistCrossEntropy (#5176) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <[email protected]> Co-authored-by: Camille Zhong <[email protected]> * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * fix ci * fix ci --------- Co-authored-by: Yuanchen <[email protected]> Co-authored-by: Xu Yuanchen <[email protected]> Co-authored-by: Camille Zhong <[email protected]> * Fix ColossalEval (#5186) Co-authored-by: Xu Yuanchen <[email protected]> * [doc] update pytorch version in documents. (#5177) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * update pytorch version in documents * polish readme in application/chat (#5194) * [pipeline]: fix p2p comm, add metadata cache and support llama interleaved pp (#5134) * test: add more p2p tests * fix: remove send_forward_recv_forward as p2p op list need to use the same group * fix: make send and receive atomic * feat: update P2PComm fn * feat: add metadata cache in 1f1b * feat: add metadata cache in interleaved pp * feat: modify is_xx_stage fn * revert: add _broadcast_object_list * feat: add interleaved pp in llama policy * feat: set NCCL_BUFFSIZE in HybridParallelPlugin * Improve logic for selecting metrics (#5196) Co-authored-by: Xu <[email protected]> * [doc] Update required third-party library list for testing and torch comptibility checking (#5207) * doc/update requirements-test.txt * update torch-cuda compatibility check * support linear accumulation fusion (#5199) support linear accumulation fusion support linear accumulation fusion fix * [pipeline]: support arbitrary batch size in forward_only mode (#5201) * fix: remove drop last in val & test dataloader * feat: add run_forward_only, support arbitrary bs * chore: modify ci script * [pipeline]: add p2p fallback order and fix interleaved pp deadlock (#5214) * fix: add fallback order option and update 1f1b * fix: fix deadlock comm in interleaved pp * test: modify p2p test * [devops] update torch versoin in ci (#5217) * fix-test (#5210) fix-test fix-test * fix flash attn (#5209) * [nfc] fix typo colossalai/shardformer/ (#5133) * [Colossal-LLaMA-2] Release Colossal-LLaMA-2-13b-base model (#5224) * update readme * update readme * update link * update * update readme * update * update * update * update title * update example * update example * fix content * add conclusion * add license * update * update * update version * fix minor * [doc] Update README.md of Colossal-LLAMA2 (#5233) * Update README.md * Update README.md * [doc] Make leaderboard format more uniform and good-looking (#5231) * Make leaderboard format more unifeid and good-looking * Update README.md * Update README.md * [doc] add Colossal-LLaMA-2-13B (#5234) * [doc] add Colossal-LLaMA-2-13B * [doc] add Colossal-LLaMA-2-13B * [doc] add Colossal-LLaMA-2-13B * [format] applied code formatting on changed files in pull request 5234 (#5235) Co-authored-by: github-actions <[email protected]> * [doc] SwiftInfer release (#5236) * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [npu] use extension for op builder (#5172) * update extension * update cpu adam * update is * add doc for cpu adam * update kernel * update commit * update flash * update memory efficient * update flash attn * update flash attention loader * update api * fix * update doc * update example time limit * reverse change * fix doc * remove useless kernel * fix * not use warning * update * update * [pipeline] A more general _communicate in p2p (#5062) * A more general _communicate * feat: finish tree_flatten version p2p * fix: update p2p api calls --------- Co-authored-by: Wenhao Chen <[email protected]> * [npu] change device to accelerator api (#5239) * update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <[email protected]> Co-authored-by: zxl <[email protected]> * [hotfix] removed unused flag (#5242) * [doc] fix typo in Colossal-LLaMA-2/README.md (#5247) * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed ddp test (#5254) * [ci] fixed ddp test * polish * fix typo in applications/ColossalEval/README.md (#5250) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <[email protected]> * [doc] fix doc typo (#5256) * [doc] fix annotation display * [doc] fix llama2 doc * [hotfix]: add pp sanity check and fix mbs arg (#5268) * fix: fix misleading mbs arg * feat: add pp sanity check * fix: fix 1f1b sanity check * [workflow] fixed incomplete bash command (#5272) * [workflow] fixed oom tests (#5275) * [workflow] fixed oom tests * polish * polish * polish * [ci] fix test_hybrid_parallel_plugin_checkpoint_io.py (#5276) * fix ci fix * fix test * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests * fix --------- Co-authored-by: Wenhao Chen <[email protected]> * [shardformer] hybridparallelplugin support gradients accumulation. (#5246) * support gradients acc fix fix fix fix fix fix fix fix fix fix fix fix fix * fix fix * fix fix fix * [hotfix] Fix ShardFormer test execution path when using sequence parallelism (#5230) * fix auto loading gpt2 tokenizer (#5279) * [doc] add llama2-13B disyplay (#5285) * Update README.md * fix 13b typo --------- Co-authored-by: binmakeswell <[email protected]> * fix llama pretrain (#5287) * [hotfix] fix 3d plugin test (#5292) * fix bug for mefture (#5299) * [NFC] polish applications/Colossal-LLaMA-2/colossal_llama2/tokenizer/init_tokenizer.py code style (#5228) * fix some typo (#5307) * [feat] refactored extension module (#5298) * [feat] refactored extension module * polish * polish * polish * polish * polish * polish * polish * polish * polish * polish * [workflow] updated CI image (#5318) * [accelerator] fixed npu api * [tests] fix t5 test. (#5322) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <[email protected]> * fix t5 test --------- Co-authored-by: Wenhao Chen <[email protected]> * [doc] added docs for extensions (#5324) * [doc] added docs for extensions * polish * polish * fix typo under extensions/ (#5330) * fix typo change dosen't to doesn't (#5308) * [extension] fixed exception catch (#5342) * [Chat] fix sft loss nan (#5345) * fix script * fix script * fix chat nan * fix chat nan * [checkpointio] fix gemini and hybrid parallel optim checkpoint (#5347) * [checkpointio] fix hybrid parallel optim checkpoint * [extension] fix cuda extension * [checkpointio] fix gemini optimizer checkpoint * polish code * [fix] remove unnecessary dp_size assert (#5351) * fix: remove unnecessary assert * test: add more 3d plugin tests * fix: add warning * [gemini] fix param op hook when output is tuple (#5355) * [gemini] fix param op hook when output is tuple * [gemini] fix param op hook * [llama] fix dataloader for hybrid parallel (#5358) * [plugin] refactor prepare dataloader * [plugin] update train script * [llama] update training script (#5360) * [llama] update training script * [doc] polish docstr * [llama] add flash attn patch for npu (#5362) * [llama] fix neftune & pbar with start_step (#5364) * [eval] update llama npu eval (#5366) * [llama] polish training script and fix optim ckpt (#5368) * [lr-scheduler] fix load state dict and add test (#5369) * [llama] fix memory issue (#5371) * [llama] fix memory issue * [llama] add comment * [moe] init mixtral impl * [moe] update capacity computing (#5253) * [moe] top2 allow uneven input * [moe] update capacity computing * [moe] remove debug info * [moe] update capacity computing * [moe] update capacity computing * [moe] support mixtral (#5309) * [moe] add mixtral block for single expert * [moe] mixtral block fwd support uneven ep * [moe] mixtral block bwd support uneven ep * [moe] add mixtral moe layer * [moe] simplify replace * [meo] support save sharded mixtral * [meo] support load sharded mixtral * [meo] support save sharded optim * [meo] integrate moe manager into plug * [meo] fix optimizer load * [meo] fix mixtral layer * [moe] fix mixtral checkpoint io (#5314) * [moe] fix mixtral forward default value (#5329) * [moe] fix mixtral optim checkpoint (#5344) * [moe] fix tests * [release] update version (#5380) * [llama] fix training and inference scripts (#5384) * [llama] refactor inference example to fit sft * [llama] fix training script to fit gemini * [llama] fix inference script * [doc] Fix typo (#5361) * [doc] updated installation command (#5389) * [hotfix] fix variable type for top_p (#5313) Co-authored-by: binmakeswell <[email protected]> * [hotfix] Fix wrong import in meta_registry (#5392) * [extension] hotfix jit extension setup (#5402) * [example] reuse flash attn patch (#5400) * [fsdp] impl save/load shard model/optimizer (#5357) * [setup] fixed nightly release (#5388) * [shardformer]gather llama logits (#5398) * gather llama logits * fix * update requirements (#5407) * [workflow] added pypi channel (#5412) * [doc] fix blog link * [doc] fix blog link * fix sft single turn inference example (#5416) * [example]add gpt2 benchmark example script. (#5295) * benchmark gpt2 * fix fix fix fix * [doc] fix typo in Colossal-LLaMA-2/README.md (#5247) * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed ddp test (#5254) * [ci] fixed ddp test * polish * fix typo in applications/ColossalEval/README.md (#5250) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <[email protected]> * [doc] fix doc typo (#5256) * [doc] fix annotation display * [doc] fix llama2 doc * [hotfix]: add pp sanity check and fix mbs arg (#5268) * fix: fix misleading mbs arg * feat: add pp sanity check * fix: fix 1f1b sanity check * [workflow] fixed incomplete bash command (#5272) * [workflow] fixed oom tests (#5275) * [workflow] fixed oom tests * polish * polish * polish * [ci] fix test_hybrid_parallel_plugin_checkpoint_io.py (#5276) * fix ci fix * fix test * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests * fix --------- Co-authored-by: Wenhao Chen <[email protected]> * [shardformer] hybridparallelplugin support gradients accumulation. (#5246) * support gradients acc fix fix fix fix fix fix fix fix fix fix fix fix fix * fix fix * fix fix fix * [hotfix] Fix ShardFormer test execution path when using sequence parallelism (#5230) * fix auto loading gpt2 tokenizer (#5279) * [doc] add llama2-13B disyplay (#5285) * Update README.md * fix 13b typo --------- Co-authored-by: binmakeswell <[email protected]> * fix llama pretrain (#5287) * fix * fix * fix fix * fix fix fix * fix fix * benchmark gpt2 * fix fix fix fix * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * fix fix * fix fix fix * fix * fix fix fix fix fix * fix * Update shardformer.py --------- Co-authored-by: digger yu <[email protected]> Co-authored-by: Frank Lee <[email protected]> Co-authored-by: Wenhao Chen <[email protected]> Co-authored-by: binmakeswell <[email protected]> Co-authored-by: Zhongkai Zhao <[email protected]> Co-authored-by: Michelle <[email protected]> Co-authored-by: Desperado-Jia <[email protected]> * [doc] sora release (#5425) * [doc] sora release * [doc] sora release * [doc] sora release * [doc] sora release * [devops] fix extention building (#5427) * [hotfix] fix sd vit import error (#5420) * fix import error * Update dpt_depth.py --------- Co-authored-by: binmakeswell <[email protected]> * [hotfix] fix typo of openmoe model source (#5403) * [doc] update some translations with README-zh-Hans.md (#5382) * [hotfix] fix typo change _descrption to _description (#5331) * [hotfix] fix typo change enabel to enable under colossalai/shardformer/ (#5317) * [eval-hotfix] set few_shot_data to None when few shot is disabled (#5422) * [hotfix] fix typo change MoECheckpintIO to MoECheckpointIO (#5335) Co-authored-by: binmakeswell <[email protected]> * [doc] Fix typo s/infered/inferred/ (#5288) Signed-off-by: hugo-syn <[email protected]> * [hotfix] fix stable diffusion inference bug. (#5289) * Update train_ddp.yaml delete "strategy" to fix DDP config loading bug in "main.py" * Update train_ddp.yaml fix inference with scripts/txt2img.py config file load bug. * Update README.md add pretrain model test code. * [colossal-llama2] add stream chat examlple for chat version model (#5428) * add stream chat for chat version * remove os.system clear * modify function name * [release] update version (#5411) * fix tensor data update for gemini loss caluculation (#5442) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme * [release] grok-1 314b inference (#5490) * [release] grok-1 inference * [release] grok-1 inference * [release] grok-1 inference * [example] update Grok-1 inference (#5495) * revise grok-1 example * remove unused arg in scripts * prevent re-installing torch * update readme * revert modifying colossalai requirements * add perf * trivial * add tokenizer url * [hotfix] set return_outputs=False in examples and polish code (#5404) * fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value * [release] grok-1 inference benchmark (#5500) * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [shardformer]Fix lm parallel. (#5480) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * fix lm forward distribution * fix * test ci * fix * [fix] fix grok-1 example typo (#5506) * [devops] fix example test ci (#5504) * Fix ColoTensorSpec for py11 (#5440) * fixed layout converter caching and updated tester * Empty-Commit * [shardformer] update colo attention to support custom mask (#5510) * [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests * [format] applied code formatting on changed files in pull request 5510 (#5517) Co-authored-by: github-actions <[email protected]> * [shardformer] fix pipeline forward error if custom layer distribution is used (#5189) * Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <[email protected]> * [Fix] Grok-1 use tokenizer from the same pretrained path (#5532) * [fix] use tokenizer from the same pretrained path * trust remote code * [ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <[email protected]> * [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508) * feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig` * feat: apply `GradientCheckpointConfig` to policy and llama_forward * feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager * fix: add optional args for `distribute_layer` and `get_stage_index` * fix: fix changed API calls * test: update llama tests * style: polish `GradientCheckpointConfig` * fix: fix pipeline utils tests * fix incorrect sharding without zero (#5545) Co-authored-by: Edenzzzz <[email protected]> * [shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <[email protected]> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <[email protected]> * [hotfix] quick fixes to make legacy tutorials runnable (#5559) Co-authored-by: Edenzzzz <[email protected]> * [fix] fix typo s/muiti-node /multi-node etc. (#5448) * [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548) * [devops] remove post commit ci (#5566) * [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [shardformer] refactor embedding resize (#5603) * [branch rebase] rebase main to Feature/resize_embedding (#5554) * fix * [release] update version (#5411) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme --------- Co-authored-by: Hongxin Liu <[email protected]> Co-authored-by: digger yu <[email protected]> Co-authored-by: binmakeswell <[email protected]> * [CI] run pre-commit (#5577) * fix * [release] update version (#5411) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme * run pre-commit --------- Co-authored-by: Hongxin Liu <[email protected]> Co-authored-by: digger yu <[email protected]> Co-authored-by: binmakeswell <[email protected]> * [rebase] rebase main to resize-embedding (#5581) * [release] grok-1 314b inference (#5490) * [release] grok-1 inference * [release] grok-1 inference * [release] grok-1 inference * [example] update Grok-1 inference (#5495) * revise grok-1 example * remove unused arg in scripts * prevent re-installing torch * update readme * revert modifying colossalai requirements * add perf * trivial * add tokenizer url * [hotfix] set return_outputs=False in examples and polish code (#5404) * fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value * [release] grok-1 inference benchmark (#5500) * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [shardformer]Fix lm parallel. (#5480) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * fix lm forward distribution * fix * test ci * fix * [fix] fix grok-1 example typo (#5506) * [devops] fix example test ci (#5504) * Fix ColoTensorSpec for py11 (#5440) * fixed layout converter caching and updated tester * Empty-Commit * [shardformer] update colo attention to support custom mask (#5510) * [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests * [format] applied code formatting on changed files in pull request 5510 (#5517) Co-authored-by: github-actions <[email protected]> * [shardformer] fix pipeline forward error if custom layer distribution is used (#5189) * Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <[email protected]> * [Fix] Grok-1 use tokenizer from the same pretrained path (#5532) * [fix] use tokenizer from the same pretrained path * trust remote code * [ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fi…
What does this PR do?
Based on flash attention official repository and code snippets shared internally by @pacman100 & @fxmarty and also based on some internal discussion with @LysandreJik, made a PoC of what a Flash Attention 2 integration would look like in transformers.
We should restrict the integration to Flash Attention 2 only for now, as there is a way to run Flash-Attention 1 through torch.SDPA +
BetterTransformer
API that is explained here: #25265I added it only for Llama for now but could be easily extended for other architectures (though I think Alibi is not supported but not sure).
Note that the performance with this integration will not be optimal in this case as flash attention shines in a batched setting when the KV caching is done in a specific format.
Draft for now.
API
Currently the API is very simple:
API example
TODOs:
cc @fxmarty @pacman100 @LysandreJik