-
Notifications
You must be signed in to change notification settings - Fork 27.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'upstream/main' into usd
- Loading branch information
Showing
6 changed files
with
160 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import os | ||
import shutil | ||
import tempfile | ||
import unittest | ||
|
||
import pytest | ||
|
||
from transformers.models.xlm_roberta.tokenization_xlm_roberta import VOCAB_FILES_NAMES | ||
from transformers.testing_utils import ( | ||
require_sentencepiece, | ||
require_tokenizers, | ||
require_vision, | ||
) | ||
from transformers.utils import is_vision_available | ||
|
||
from ...test_processing_common import ProcessorTesterMixin | ||
|
||
|
||
if is_vision_available(): | ||
from transformers import TrOCRProcessor, ViTImageProcessor, XLMRobertaTokenizerFast | ||
|
||
|
||
@require_sentencepiece | ||
@require_tokenizers | ||
@require_vision | ||
class TrOCRProcessorTest(ProcessorTesterMixin, unittest.TestCase): | ||
text_input_name = "labels" | ||
processor_class = TrOCRProcessor | ||
|
||
def setUp(self): | ||
self.tmpdirname = tempfile.mkdtemp() | ||
|
||
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip | ||
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | ||
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: | ||
vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) | ||
|
||
image_processor = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") | ||
tokenizer = XLMRobertaTokenizerFast.from_pretrained("FacebookAI/xlm-roberta-base") | ||
processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer) | ||
processor.save_pretrained(self.tmpdirname) | ||
|
||
def tearDown(self): | ||
shutil.rmtree(self.tmpdirname) | ||
|
||
def get_tokenizer(self, **kwargs): | ||
return XLMRobertaTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) | ||
|
||
def get_image_processor(self, **kwargs): | ||
return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) | ||
|
||
def test_save_load_pretrained_default(self): | ||
image_processor = self.get_image_processor() | ||
tokenizer = self.get_tokenizer() | ||
processor = TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer) | ||
|
||
processor.save_pretrained(self.tmpdirname) | ||
processor = TrOCRProcessor.from_pretrained(self.tmpdirname) | ||
|
||
self.assertIsInstance(processor.tokenizer, XLMRobertaTokenizerFast) | ||
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) | ||
self.assertIsInstance(processor.image_processor, ViTImageProcessor) | ||
self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) | ||
|
||
def test_save_load_pretrained_additional_features(self): | ||
processor = TrOCRProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) | ||
processor.save_pretrained(self.tmpdirname) | ||
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") | ||
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) | ||
|
||
processor = TrOCRProcessor.from_pretrained( | ||
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 | ||
) | ||
|
||
self.assertIsInstance(processor.tokenizer, XLMRobertaTokenizerFast) | ||
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) | ||
|
||
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) | ||
self.assertIsInstance(processor.image_processor, ViTImageProcessor) | ||
|
||
def test_image_processor(self): | ||
image_processor = self.get_image_processor() | ||
tokenizer = self.get_tokenizer() | ||
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) | ||
image_input = self.prepare_image_inputs() | ||
|
||
input_feat_extract = image_processor(image_input, return_tensors="np") | ||
input_processor = processor(images=image_input, return_tensors="np") | ||
|
||
for key in input_feat_extract.keys(): | ||
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) | ||
|
||
def test_tokenizer(self): | ||
image_processor = self.get_image_processor() | ||
tokenizer = self.get_tokenizer() | ||
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) | ||
input_str = "lower newer" | ||
|
||
encoded_processor = processor(text=input_str) | ||
encoded_tok = tokenizer(input_str) | ||
|
||
for key in encoded_tok.keys(): | ||
self.assertListEqual(encoded_tok[key], encoded_processor[key]) | ||
|
||
def test_processor_text(self): | ||
image_processor = self.get_image_processor() | ||
tokenizer = self.get_tokenizer() | ||
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) | ||
input_str = "lower newer" | ||
image_input = self.prepare_image_inputs() | ||
|
||
inputs = processor(text=input_str, images=image_input) | ||
|
||
self.assertListEqual(list(inputs.keys()), ["pixel_values", "labels"]) | ||
|
||
# test if it raises when no input is passed | ||
with pytest.raises(ValueError): | ||
processor() | ||
|
||
def test_tokenizer_decode(self): | ||
image_processor = self.get_image_processor() | ||
tokenizer = self.get_tokenizer() | ||
processor = TrOCRProcessor(tokenizer=tokenizer, image_processor=image_processor) | ||
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] | ||
|
||
decoded_processor = processor.batch_decode(predicted_ids) | ||
decoded_tok = tokenizer.batch_decode(predicted_ids) | ||
|
||
self.assertListEqual(decoded_tok, decoded_processor) |