Skip to content

Commit

Permalink
change bnb tests (#34713)
Browse files Browse the repository at this point in the history
* fix training tests

* fix xpu check

Signed-off-by: jiqing-feng <[email protected]>

* rm pdb

Signed-off-by: jiqing-feng <[email protected]>

* fix 4bit logits check

Signed-off-by: jiqing-feng <[email protected]>

* fix 4bit logits check

Signed-off-by: jiqing-feng <[email protected]>

* add xpu check on int8 training

* fix training tests

* add llama test on bnb

Signed-off-by: jiqing-feng <[email protected]>

* only cpu and xpu disable autocast training

Signed-off-by: jiqing-feng <[email protected]>

* fix format

Signed-off-by: jiqing-feng <[email protected]>

---------

Signed-off-by: jiqing-feng <[email protected]>
Co-authored-by: Titus <[email protected]>
  • Loading branch information
jiqing-feng and Titus-von-Koeller authored Dec 18, 2024
1 parent da334bc commit 69e31eb
Show file tree
Hide file tree
Showing 2 changed files with 67 additions and 10 deletions.
22 changes: 21 additions & 1 deletion tests/quantization/bnb/test_4bit.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,8 @@ def get_some_linear_layer(model):
except AttributeError:
# for AutoModelforCausalLM
return model.model.decoder.layers[0].fc1
elif model.config.model_type == "llama":
return model.model.layers[0].mlp.gate_proj
else:
return model.transformer.h[0].mlp.dense_4h_to_h

Expand Down Expand Up @@ -106,6 +108,7 @@ class Base4bitTest(unittest.TestCase):
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n")
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University")
EXPECTED_OUTPUTS.add("Hello my name is John and I am 25 years old.")
MAX_NEW_TOKENS = 10

def setUp(self):
Expand Down Expand Up @@ -555,6 +558,8 @@ def test_training(self):

if torch.cuda.is_available():
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
elif torch.xpu.is_available():
self.assertEqual(set(model.hf_device_map.values()), {f"xpu:{torch.xpu.current_device()}"})
else:
self.assertTrue(all(param.device.type == "cpu" for param in model.parameters()))

Expand Down Expand Up @@ -588,11 +593,18 @@ def test_training(self):


@apply_skip_if_not_implemented
@unittest.skipIf(torch_device == "xpu", reason="XPU has precision issue on gpt model, will test it once fixed")
class Bnb4BitGPT2Test(Bnb4BitTest):
model_name = "openai-community/gpt2-xl"
EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187


@apply_skip_if_not_implemented
class Bnb4BitLlamaTest(Bnb4BitTest):
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
EXPECTED_RELATIVE_DIFFERENCE = 2.9461410686392764


@require_bitsandbytes
@require_accelerate
@require_torch
Expand Down Expand Up @@ -672,7 +684,7 @@ def test_serialization(self, quant_type="nf4", double_quant=True, safe_serializa
encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device)
out_0 = model_0(**encoded_input)
out_1 = model_1(**encoded_input)
self.assertTrue(torch.equal(out_0["logits"], out_1["logits"]))
self.assertTrue(torch.allclose(out_0["logits"], out_1["logits"], atol=0.05))

# comparing generate() outputs
encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device)
Expand Down Expand Up @@ -734,6 +746,14 @@ class GPTSerializationTest(BaseSerializationTest):
model_name = "openai-community/gpt2-xl"


class LlamaSerializationTest(BaseSerializationTest):
"""
default BaseSerializationTest config tested with Llama family model
"""

model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"


@require_bitsandbytes
@require_accelerate
@require_torch_gpu_if_bnb_not_multi_backend_enabled
Expand Down
55 changes: 46 additions & 9 deletions tests/quantization/bnb/test_mixed_int8.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,8 @@
def get_some_linear_layer(model):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
elif model.config.model_type == "llama":
return model.model.layers[0].mlp.gate_proj
return model.transformer.h[0].mlp.dense_4h_to_h


Expand All @@ -65,12 +67,12 @@ def get_some_linear_layer(model):
class LoRALayer(nn.Module):
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""

def __init__(self, module: nn.Module, rank: int):
def __init__(self, module: nn.Module, rank: int, dtype: torch.dtype):
super().__init__()
self.module = module
self.adapter = nn.Sequential(
nn.Linear(module.in_features, rank, bias=False),
nn.Linear(rank, module.out_features, bias=False),
nn.Linear(module.in_features, rank, bias=False, dtype=dtype),
nn.Linear(rank, module.out_features, bias=False, dtype=dtype),
)
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=small_std)
Expand Down Expand Up @@ -858,29 +860,36 @@ def test_training(self):

if torch.cuda.is_available():
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
elif torch.xpu.is_available():
self.assertEqual(set(model.hf_device_map.values()), {f"xpu:{torch.xpu.current_device()}"})
else:
self.assertTrue(all(param.device.type == "cpu" for param in model.parameters()))

for param in model.parameters():
param.requires_grad = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
# cast all non INT8 parameters to fp32
if param.dtype in (torch.float16, torch.bfloat16) and param.__class__.__name__ != "Params4bit":
param.data = param.data.to(torch.float32)

# Step 2: add adapters
for _, module in model.named_modules():
if isinstance(module, OPTAttention):
module.q_proj = LoRALayer(module.q_proj, rank=16)
module.k_proj = LoRALayer(module.k_proj, rank=16)
module.v_proj = LoRALayer(module.v_proj, rank=16)
module.q_proj = LoRALayer(module.q_proj, rank=16, dtype=model.dtype)
module.k_proj = LoRALayer(module.k_proj, rank=16, dtype=model.dtype)
module.v_proj = LoRALayer(module.v_proj, rank=16, dtype=model.dtype)

# Step 3: dummy batch
batch = self.tokenizer("Test batch ", return_tensors="pt").to(torch_device)

# Step 4: Check if the gradient is not None
with torch.autocast(torch_device):
if torch_device in {"xpu", "cpu"}:
# XPU and CPU finetune do not support autocast for now.
out = model.forward(**batch)
out.logits.norm().backward()
else:
with torch.autocast(torch_device):
out = model.forward(**batch)
out.logits.norm().backward()

for module in model.modules():
if isinstance(module, LoRALayer):
Expand All @@ -891,6 +900,7 @@ def test_training(self):


@apply_skip_if_not_implemented
@unittest.skipIf(torch_device == "xpu", reason="XPU has precision issue on gpt model, will test it once fixed")
class MixedInt8GPT2Test(MixedInt8Test):
model_name = "openai-community/gpt2-xl"
EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357
Expand Down Expand Up @@ -922,3 +932,30 @@ def test_int8_from_pretrained(self):
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(torch_device), max_new_tokens=10)

self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)


class MixedInt8LlamaTest(MixedInt8Test):
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
EXPECTED_RELATIVE_DIFFERENCE = 1.7869331026479096
EXPECTED_OUTPUTS = set()
EXPECTED_OUTPUTS.add("Hello my name is John Smith and I am a software engineer. I")

def test_int8_from_pretrained(self):
r"""
Test whether loading a 8bit model from the Hub works as expected
"""
from bitsandbytes.nn import Int8Params

model_id = "Jiqing/TinyLlama-1.1B-Chat-v1.0-bnb-8bit"

model = AutoModelForCausalLM.from_pretrained(model_id)

linear = get_some_linear_layer(model)
self.assertTrue(linear.weight.__class__ == Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))

# generate
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(torch_device), max_new_tokens=10)

self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)

0 comments on commit 69e31eb

Please sign in to comment.