Skip to content

Commit

Permalink
Merge branch 'jameslahm-main'
Browse files Browse the repository at this point in the history
  • Loading branch information
rwightman committed Oct 20, 2023
2 parents d3ebdcf + 462fb3e commit a517b82
Showing 1 changed file with 117 additions and 25 deletions.
142 changes: 117 additions & 25 deletions timm/models/repvit.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,19 +82,30 @@ def fuse(self):


class RepVggDw(nn.Module):
def __init__(self, ed, kernel_size):
def __init__(self, ed, kernel_size, legacy=False):
super().__init__()
self.conv = ConvNorm(ed, ed, kernel_size, 1, (kernel_size - 1) // 2, groups=ed)
self.conv1 = ConvNorm(ed, ed, 1, 1, 0, groups=ed)
if legacy:
self.conv1 = ConvNorm(ed, ed, 1, 1, 0, groups=ed)
# Make torchscript happy.
self.bn = nn.Identity()
else:
self.conv1 = nn.Conv2d(ed, ed, 1, 1, 0, groups=ed)
self.bn = nn.BatchNorm2d(ed)
self.dim = ed
self.legacy = legacy

def forward(self, x):
return self.conv(x) + self.conv1(x) + x
return self.bn(self.conv(x) + self.conv1(x) + x)

@torch.no_grad()
def fuse(self):
conv = self.conv.fuse()
conv1 = self.conv1.fuse()

if self.legacy:
conv1 = self.conv1.fuse()
else:
conv1 = self.conv1

conv_w = conv.weight
conv_b = conv.bias
Expand All @@ -112,6 +123,14 @@ def fuse(self):

conv.weight.data.copy_(final_conv_w)
conv.bias.data.copy_(final_conv_b)

if not self.legacy:
bn = self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = conv.weight * w[:, None, None, None]
b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / (bn.running_var + bn.eps) ** 0.5
conv.weight.data.copy_(w)
conv.bias.data.copy_(b)
return conv


Expand All @@ -127,10 +146,10 @@ def forward(self, x):


class RepViTBlock(nn.Module):
def __init__(self, in_dim, mlp_ratio, kernel_size, use_se, act_layer):
def __init__(self, in_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy=False):
super(RepViTBlock, self).__init__()

self.token_mixer = RepVggDw(in_dim, kernel_size)
self.token_mixer = RepVggDw(in_dim, kernel_size, legacy)
self.se = SqueezeExcite(in_dim, 0.25) if use_se else nn.Identity()
self.channel_mixer = RepVitMlp(in_dim, in_dim * mlp_ratio, act_layer)

Expand All @@ -155,9 +174,9 @@ def forward(self, x):


class RepVitDownsample(nn.Module):
def __init__(self, in_dim, mlp_ratio, out_dim, kernel_size, act_layer):
def __init__(self, in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy=False):
super().__init__()
self.pre_block = RepViTBlock(in_dim, mlp_ratio, kernel_size, use_se=False, act_layer=act_layer)
self.pre_block = RepViTBlock(in_dim, mlp_ratio, kernel_size, use_se=False, act_layer=act_layer, legacy=legacy)
self.spatial_downsample = ConvNorm(in_dim, in_dim, kernel_size, 2, (kernel_size - 1) // 2, groups=in_dim)
self.channel_downsample = ConvNorm(in_dim, out_dim, 1, 1)
self.ffn = RepVitMlp(out_dim, out_dim * mlp_ratio, act_layer)
Expand All @@ -172,7 +191,7 @@ def forward(self, x):


class RepVitClassifier(nn.Module):
def __init__(self, dim, num_classes, distillation=False, drop=0.):
def __init__(self, dim, num_classes, distillation=False, drop=0.0):
super().__init__()
self.head_drop = nn.Dropout(drop)
self.head = NormLinear(dim, num_classes) if num_classes > 0 else nn.Identity()
Expand Down Expand Up @@ -211,18 +230,18 @@ def fuse(self):


class RepVitStage(nn.Module):
def __init__(self, in_dim, out_dim, depth, mlp_ratio, act_layer, kernel_size=3, downsample=True):
def __init__(self, in_dim, out_dim, depth, mlp_ratio, act_layer, kernel_size=3, downsample=True, legacy=False):
super().__init__()
if downsample:
self.downsample = RepVitDownsample(in_dim, mlp_ratio, out_dim, kernel_size, act_layer)
self.downsample = RepVitDownsample(in_dim, mlp_ratio, out_dim, kernel_size, act_layer, legacy)
else:
assert in_dim == out_dim
self.downsample = nn.Identity()

blocks = []
use_se = True
for _ in range(depth):
blocks.append(RepViTBlock(out_dim, mlp_ratio, kernel_size, use_se, act_layer))
blocks.append(RepViTBlock(out_dim, mlp_ratio, kernel_size, use_se, act_layer, legacy))
use_se = not use_se

self.blocks = nn.Sequential(*blocks)
Expand All @@ -246,7 +265,8 @@ def __init__(
num_classes=1000,
act_layer=nn.GELU,
distillation=True,
drop_rate=0.,
drop_rate=0.0,
legacy=False,
):
super(RepVit, self).__init__()
self.grad_checkpointing = False
Expand Down Expand Up @@ -275,6 +295,7 @@ def __init__(
act_layer=act_layer,
kernel_size=kernel_size,
downsample=downsample,
legacy=legacy,
)
)
stage_stride = 2 if downsample else 1
Expand All @@ -290,12 +311,9 @@ def __init__(

@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^stem', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
matcher = dict(stem=r'^stem', blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]) # stem and embed
return matcher

@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
Expand Down Expand Up @@ -369,15 +387,42 @@ def _cfg(url='', **kwargs):
{
'repvit_m1.dist_in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/THU-MIG/RepViT/releases/download/v1.0/repvit_m1_distill_300_timm.pth'
),
'repvit_m2.dist_in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/THU-MIG/RepViT/releases/download/v1.0/repvit_m2_distill_300_timm.pth'
),
'repvit_m3.dist_in1k': _cfg(
hf_hub_id='timm/',
# url='https://github.com/THU-MIG/RepViT/releases/download/v1.0/repvit_m3_distill_300_timm.pth'
),
'repvit_m0_9.dist_300e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m0_9.dist_450e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m1_0.dist_300e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m1_0.dist_450e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m1_1.dist_300e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m1_1.dist_450e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m1_5.dist_300e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m1_5.dist_450e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m2_3.dist_300e_in1k': _cfg(
hf_hub_id='timm/',
),
'repvit_m2_3.dist_450e_in1k': _cfg(
hf_hub_id='timm/',
),
}
)
Expand All @@ -386,7 +431,9 @@ def _cfg(url='', **kwargs):
def _create_repvit(variant, pretrained=False, **kwargs):
out_indices = kwargs.pop('out_indices', (0, 1, 2, 3))
model = build_model_with_cfg(
RepVit, variant, pretrained,
RepVit,
variant,
pretrained,
feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
**kwargs,
)
Expand All @@ -398,7 +445,7 @@ def repvit_m1(pretrained=False, **kwargs):
"""
Constructs a RepViT-M1 model
"""
model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2))
model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2), legacy=True)
return _create_repvit('repvit_m1', pretrained=pretrained, **dict(model_args, **kwargs))


Expand All @@ -407,7 +454,7 @@ def repvit_m2(pretrained=False, **kwargs):
"""
Constructs a RepViT-M2 model
"""
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2))
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2), legacy=True)
return _create_repvit('repvit_m2', pretrained=pretrained, **dict(model_args, **kwargs))


Expand All @@ -416,5 +463,50 @@ def repvit_m3(pretrained=False, **kwargs):
"""
Constructs a RepViT-M3 model
"""
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 18, 2))
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 18, 2), legacy=True)
return _create_repvit('repvit_m3', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def repvit_m0_9(pretrained=False, **kwargs):
"""
Constructs a RepViT-M0.9 model
"""
model_args = dict(embed_dim=(48, 96, 192, 384), depth=(2, 2, 14, 2))
return _create_repvit('repvit_m0_9', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def repvit_m1_0(pretrained=False, **kwargs):
"""
Constructs a RepViT-M1.0 model
"""
model_args = dict(embed_dim=(56, 112, 224, 448), depth=(2, 2, 14, 2))
return _create_repvit('repvit_m1_0', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def repvit_m1_1(pretrained=False, **kwargs):
"""
Constructs a RepViT-M1.1 model
"""
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(2, 2, 12, 2))
return _create_repvit('repvit_m1_1', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def repvit_m1_5(pretrained=False, **kwargs):
"""
Constructs a RepViT-M1.5 model
"""
model_args = dict(embed_dim=(64, 128, 256, 512), depth=(4, 4, 24, 4))
return _create_repvit('repvit_m1_5', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def repvit_m2_3(pretrained=False, **kwargs):
"""
Constructs a RepViT-M2.3 model
"""
model_args = dict(embed_dim=(80, 160, 320, 640), depth=(6, 6, 34, 2))
return _create_repvit('repvit_m2_3', pretrained=pretrained, **dict(model_args, **kwargs))

0 comments on commit a517b82

Please sign in to comment.