Skip to content

Commit

Permalink
Update optim test to remove Variable/.data and fix _state_dict optim …
Browse files Browse the repository at this point in the history
…test for PyTorch 2.1 (#1988)

* Update optim test to remove Variable/.data and fix _state_dict optim test

* Attempt to run python 3.11 w/ 2.1

* Try factoring out testmarker to common var

* More fiddling

* Abandon attempt to reduce redunancy

* Another try
  • Loading branch information
rwightman authored Oct 12, 2023
1 parent 7ce65a8 commit 68b2824
Show file tree
Hide file tree
Showing 2 changed files with 26 additions and 26 deletions.
14 changes: 8 additions & 6 deletions .github/workflows/tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,12 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest]
python: ['3.10']
torch: ['1.13.0']
torchvision: ['0.14.0']
python: ['3.10', '3.11']
torch: [{base: '1.13.0', vision: '0.14.0'}, {base: '2.1.0', vision: '0.16.0'}]
testmarker: ['-k "not test_models"', '-m base', '-m cfg', '-m torchscript', '-m features', '-m fxforward', '-m fxbackward']
exclude:
- python: '3.11'
torch: {base: '1.13.0', vision: '0.14.0'}
runs-on: ${{ matrix.os }}

steps:
Expand All @@ -34,17 +36,17 @@ jobs:
pip install -r requirements-dev.txt
- name: Install torch on mac
if: startsWith(matrix.os, 'macOS')
run: pip install --no-cache-dir torch==${{ matrix.torch }} torchvision==${{ matrix.torchvision }}
run: pip install --no-cache-dir torch==${{ matrix.torch.base }} torchvision==${{ matrix.torch.vision }}
- name: Install torch on Windows
if: startsWith(matrix.os, 'windows')
run: pip install --no-cache-dir torch==${{ matrix.torch }} torchvision==${{ matrix.torchvision }}
run: pip install --no-cache-dir torch==${{ matrix.torch.base }} torchvision==${{ matrix.torch.vision }}
- name: Install torch on ubuntu
if: startsWith(matrix.os, 'ubuntu')
run: |
sudo sed -i 's/azure\.//' /etc/apt/sources.list
sudo apt update
sudo apt install -y google-perftools
pip install --no-cache-dir torch==${{ matrix.torch }}+cpu torchvision==${{ matrix.torchvision }}+cpu -f https://download.pytorch.org/whl/torch_stable.html
pip install --no-cache-dir torch==${{ matrix.torch.base }}+cpu torchvision==${{ matrix.torch.vision }}+cpu -f https://download.pytorch.org/whl/torch_stable.html
- name: Install requirements
run: |
pip install -r requirements.txt
Expand Down
38 changes: 18 additions & 20 deletions tests/test_optim.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

import torch
from torch.testing._internal.common_utils import TestCase
from torch.autograd import Variable
from torch.nn import Parameter
from timm.scheduler import PlateauLRScheduler

from timm.optim import create_optimizer_v2
Expand All @@ -21,9 +21,9 @@


def _test_basic_cases_template(weight, bias, input, constructor, scheduler_constructors):
weight = Variable(weight, requires_grad=True)
bias = Variable(bias, requires_grad=True)
input = Variable(input)
weight = Parameter(weight)
bias = Parameter(bias)
input = Parameter(input)
optimizer = constructor(weight, bias)
schedulers = []
for scheduler_constructor in scheduler_constructors:
Expand Down Expand Up @@ -55,9 +55,9 @@ def fn():


def _test_state_dict(weight, bias, input, constructor):
weight = Variable(weight, requires_grad=True)
bias = Variable(bias, requires_grad=True)
input = Variable(input)
weight = Parameter(weight)
bias = Parameter(bias)
input = Parameter(input)

def fn_base(optimizer, weight, bias):
optimizer.zero_grad()
Expand All @@ -73,8 +73,9 @@ def fn_base(optimizer, weight, bias):
for _i in range(20):
optimizer.step(fn)
# Clone the weights and construct new optimizer for them
weight_c = Variable(weight.data.clone(), requires_grad=True)
bias_c = Variable(bias.data.clone(), requires_grad=True)
with torch.no_grad():
weight_c = Parameter(weight.clone().detach())
bias_c = Parameter(bias.clone().detach())
optimizer_c = constructor(weight_c, bias_c)
fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c)
# Load state dict
Expand All @@ -86,12 +87,8 @@ def fn_base(optimizer, weight, bias):
for _i in range(20):
optimizer.step(fn)
optimizer_c.step(fn_c)
#assert torch.equal(weight, weight_c)
#assert torch.equal(bias, bias_c)
torch_tc.assertEqual(weight, weight_c)
torch_tc.assertEqual(bias, bias_c)
# Make sure state dict wasn't modified
torch_tc.assertEqual(state_dict, state_dict_c)
# Make sure state dict is deterministic with equal but not identical parameters
torch_tc.assertEqual(optimizer.state_dict(), optimizer_c.state_dict())
# Make sure repeated parameters have identical representation in state dict
Expand All @@ -103,9 +100,10 @@ def fn_base(optimizer, weight, bias):
if not torch.cuda.is_available():
return

input_cuda = Variable(input.data.float().cuda())
weight_cuda = Variable(weight.data.float().cuda(), requires_grad=True)
bias_cuda = Variable(bias.data.float().cuda(), requires_grad=True)
with torch.no_grad():
input_cuda = Parameter(input.clone().detach().float().cuda())
weight_cuda = Parameter(weight.clone().detach().cuda())
bias_cuda = Parameter(bias.clone().detach().cuda())
optimizer_cuda = constructor(weight_cuda, bias_cuda)
fn_cuda = functools.partial(fn_base, optimizer_cuda, weight_cuda, bias_cuda)

Expand Down Expand Up @@ -216,21 +214,21 @@ def _test_rosenbrock(constructor, scheduler_constructors=None):
scheduler_constructors = []
params_t = torch.tensor([1.5, 1.5])

params = Variable(params_t, requires_grad=True)
params = Parameter(params_t)
optimizer = constructor([params])
schedulers = []
for scheduler_constructor in scheduler_constructors:
schedulers.append(scheduler_constructor(optimizer))

solution = torch.tensor([1, 1])
initial_dist = params.data.dist(solution)
initial_dist = params.clone().detach().dist(solution)

def eval(params, w):
# Depending on w, provide only the x or y gradient
optimizer.zero_grad()
loss = rosenbrock(params)
loss.backward()
grad = drosenbrock(params.data)
grad = drosenbrock(params.clone().detach())
# NB: We torture test the optimizer by returning an
# uncoalesced sparse tensor
if w:
Expand All @@ -256,7 +254,7 @@ def eval(params, w):
else:
scheduler.step()

torch_tc.assertLessEqual(params.data.dist(solution), initial_dist)
torch_tc.assertLessEqual(params.clone().detach().dist(solution), initial_dist)


def _build_params_dict(weight, bias, **kwargs):
Expand Down

0 comments on commit 68b2824

Please sign in to comment.