Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix quantization for onnxruntime v1.16.0 #1405

Merged
merged 6 commits into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions optimum/onnxruntime/quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,6 +279,10 @@ def compute_ranges(self) -> Dict[str, Tuple[float, float]]:
)

LOGGER.info("Computing calibration ranges")

if parse(ort_version) >= Version("1.16.0"):
return self._calibrator.compute_data()

return self._calibrator.compute_range()

def quantize(
Expand Down Expand Up @@ -351,8 +355,13 @@ def quantize(
has_subgraphs = True
break

if quantization_config.is_static and has_subgraphs:
raise NotImplementedError("Static quantization is currently not supported for models with" " subgraphs.")
if has_subgraphs:
if quantization_config.is_static:
raise NotImplementedError("Static quantization is currently not supported for models with subgraphs.")
if parse(ort_version) == Version("1.16.0"):
raise ValueError(
"ONNX Runtime version v1.16.0 is not compatible with quantization for models with subgraphs, please downgrade to 1.15.1 or upgrade to a higher version. Reference: https://github.com/microsoft/onnxruntime/pull/17651"
)

quantizer_factory = QDQQuantizer if use_qdq else ONNXQuantizer

Expand Down
15 changes: 13 additions & 2 deletions tests/cli/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,9 @@
import unittest
from pathlib import Path

from onnxruntime import __version__ as ort_version
from packaging.version import Version, parse

import optimum.commands


Expand Down Expand Up @@ -84,14 +87,22 @@ def test_quantize_commands(self):
export_commands = [
f"optimum-cli export onnx --model hf-internal-testing/tiny-random-BertModel {tempdir}/encoder",
f"optimum-cli export onnx --model hf-internal-testing/tiny-random-gpt2 {tempdir}/decoder",
f"optimum-cli export onnx --model hf-internal-testing/tiny-random-t5 {tempdir}/encoder-decoder",
# f"optimum-cli export onnx --model hf-internal-testing/tiny-random-t5 {tempdir}/encoder-decoder",
]
quantize_commands = [
f"optimum-cli onnxruntime quantize --onnx_model {tempdir}/encoder --avx2 -o {tempdir}/quantized_encoder",
f"optimum-cli onnxruntime quantize --onnx_model {tempdir}/decoder --avx2 -o {tempdir}/quantized_decoder",
f"optimum-cli onnxruntime quantize --onnx_model {tempdir}/encoder-decoder --avx2 -o {tempdir}/quantized_encoder_decoder",
# f"optimum-cli onnxruntime quantize --onnx_model {tempdir}/encoder-decoder --avx2 -o {tempdir}/quantized_encoder_decoder",
]

if parse(ort_version) != Version("1.16.0"):
export_commands.append(
f"optimum-cli export onnx --model hf-internal-testing/tiny-random-t5 {tempdir}/encoder-decoder"
)
quantize_commands.append(
f"optimum-cli onnxruntime quantize --onnx_model {tempdir}/encoder-decoder --avx2 -o {tempdir}/quantized_encoder_decoder"
)

for export, quantize in zip(export_commands, quantize_commands):
subprocess.run(export, shell=True, check=True)
subprocess.run(quantize, shell=True, check=True)
Expand Down
4 changes: 3 additions & 1 deletion tests/onnxruntime/test_quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,9 @@
from pathlib import Path

from onnx import load as onnx_load
from onnxruntime import __version__ as ort_version
from onnxruntime.quantization import QuantFormat, QuantizationMode, QuantType
from packaging.version import Version, parse
from parameterized import parameterized
from transformers import AutoTokenizer

Expand Down Expand Up @@ -112,9 +114,9 @@ def test_dynamic_quantization(self, model_cls, model_name, expected_quantized_ma
self.assertEqual(expected_quantized_matmuls, num_quantized_matmul)
gc.collect()

@unittest.skipIf(parse(ort_version) == Version("1.16.0"), "not supported with this onnxruntime version")
def test_dynamic_quantization_subgraphs(self):
qconfig = AutoQuantizationConfig.avx512(is_static=False, per_channel=True)
# with tempfile.TemporaryDirectory() as tmp_dir:
tmp_dir = tempfile.mkdtemp()
output_dir = Path(tmp_dir)
model = ORTModelForCausalLM.from_pretrained(
Expand Down