Skip to content

Commit

Permalink
Merge branch 'main' into regenerate-api-inference-docs
Browse files Browse the repository at this point in the history
  • Loading branch information
hanouticelina committed Nov 18, 2024
2 parents a914215 + 135c53e commit 290314b
Show file tree
Hide file tree
Showing 6 changed files with 335 additions and 100 deletions.
306 changes: 254 additions & 52 deletions docs/api-inference/tasks/chat-completion.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,46 +64,133 @@ The API supports:
curl 'https://api-inference.huggingface.co/models/google/gemma-2-2b-it/v1/chat/completions' \
-H "Authorization: Bearer hf_***" \
-H 'Content-Type: application/json' \
-d '{
"model": "google/gemma-2-2b-it",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"max_tokens": 500,
"stream": false
--data '{
"model": "google/gemma-2-2b-it",
"messages": [
{
"role": "user",
"content": "What is the capital of France?"
}
],
"max_tokens": 500,
"stream": true
}'

```
</curl>

<python>
With huggingface_hub client:
```py
from huggingface_hub import InferenceClient

client = InferenceClient(api_key="hf_***")

for message in client.chat_completion(
model="google/gemma-2-2b-it",
messages=[{"role": "user", "content": "What is the capital of France?"}],
messages = [
{
"role": "user",
"content": "What is the capital of France?"
}
]

stream = client.chat.completions.create(
model="google/gemma-2-2b-it",
messages=messages,
max_tokens=500,
stream=True,
):
print(message.choices[0].delta.content, end="")
stream=True
)

for chunk in stream:
print(chunk.choices[0].delta.content, end="")
```

With openai client:
```py
from openai import OpenAI

client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key="hf_***"
)

messages = [
{
"role": "user",
"content": "What is the capital of France?"
}
]

stream = client.chat.completions.create(
model="google/gemma-2-2b-it",
messages=messages,
max_tokens=500,
stream=True
)

for chunk in stream:
print(chunk.choices[0].delta.content, end="")
```

To use the Python client, see `huggingface_hub`'s [package reference](https://huggingface.co/docs/huggingface_hub/package_reference/inference_client#huggingface_hub.InferenceClient.chat_completion).
</python>

<js>
With huggingface_hub client:
```js
import { HfInference } from "@huggingface/inference";
import { HfInference } from "@huggingface/inference"

const inference = new HfInference("hf_***");
const client = new HfInference("hf_***")

for await (const chunk of inference.chatCompletionStream({
let out = "";

const stream = client.chatCompletionStream({
model: "google/gemma-2-2b-it",
messages: [{ role: "user", content: "What is the capital of France?" }],
messages: [
{
role: "user",
content: "What is the capital of France?"
}
],
max_tokens: 500
});

for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0) {
const newContent = chunk.choices[0].delta.content;
out += newContent;
console.log(newContent);
}
}
```

With openai client:
```js
import { OpenAI } from "openai"

const client = new OpenAI({
baseURL: "https://api-inference.huggingface.co/v1/",
apiKey: "hf_***"
})

let out = "";

const stream = await client.chat.completions.create({
model: "google/gemma-2-2b-it",
messages: [
{
role: "user",
content: "What is the capital of France?"
}
],
max_tokens: 500,
})) {
process.stdout.write(chunk.choices[0]?.delta?.content || "");
stream: true,
});

for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0) {
const newContent = chunk.choices[0].delta.content;
out += newContent;
console.log(newContent);
}
}
```

Expand All @@ -124,73 +211,188 @@ To use the JavaScript client, see `huggingface.js`'s [package reference](https:/
curl 'https://api-inference.huggingface.co/models/meta-llama/Llama-3.2-11B-Vision-Instruct/v1/chat/completions' \
-H "Authorization: Bearer hf_***" \
-H 'Content-Type: application/json' \
-d '{
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"messages": [
--data '{
"model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"messages": [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"}},
{"type": "text", "text": "Describe this image in one sentence."}
{
"type": "text",
"text": "Describe this image in one sentence."
},
{
"type": "image_url",
"image_url": {
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
}
}
]
}
],
"max_tokens": 500,
"stream": false
"max_tokens": 500,
"stream": true
}'

```
</curl>

<python>
With huggingface_hub client:
```py
from huggingface_hub import InferenceClient

client = InferenceClient(api_key="hf_***")

image_url = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Describe this image in one sentence."
},
{
"type": "image_url",
"image_url": {
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
}
}
]
}
]

stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)

for message in client.chat_completion(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=[
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": "Describe this image in one sentence."},
],
}
],
for chunk in stream:
print(chunk.choices[0].delta.content, end="")
```

With openai client:
```py
from openai import OpenAI

client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key="hf_***"
)

messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Describe this image in one sentence."
},
{
"type": "image_url",
"image_url": {
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
}
}
]
}
]

stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True,
):
print(message.choices[0].delta.content, end="")
stream=True
)

for chunk in stream:
print(chunk.choices[0].delta.content, end="")
```

To use the Python client, see `huggingface_hub`'s [package reference](https://huggingface.co/docs/huggingface_hub/package_reference/inference_client#huggingface_hub.InferenceClient.chat_completion).
</python>

<js>
With huggingface_hub client:
```js
import { HfInference } from "@huggingface/inference";
import { HfInference } from "@huggingface/inference"

const inference = new HfInference("hf_***");
const imageUrl = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg";
const client = new HfInference("hf_***")

for await (const chunk of inference.chatCompletionStream({
let out = "";

const stream = client.chatCompletionStream({
model: "meta-llama/Llama-3.2-11B-Vision-Instruct",
messages: [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": imageUrl}},
{"type": "text", "text": "Describe this image in one sentence."},
],
role: "user",
content: [
{
type: "text",
text: "Describe this image in one sentence."
},
{
type: "image_url",
image_url: {
url: "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
}
}
]
}
],
max_tokens: 500
});

for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0) {
const newContent = chunk.choices[0].delta.content;
out += newContent;
console.log(newContent);
}
}
```

With openai client:
```js
import { OpenAI } from "openai"

const client = new OpenAI({
baseURL: "https://api-inference.huggingface.co/v1/",
apiKey: "hf_***"
})

let out = "";

const stream = await client.chat.completions.create({
model: "meta-llama/Llama-3.2-11B-Vision-Instruct",
messages: [
{
role: "user",
content: [
{
type: "text",
text: "Describe this image in one sentence."
},
{
type: "image_url",
image_url: {
url: "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
}
}
]
}
],
max_tokens: 500,
})) {
process.stdout.write(chunk.choices[0]?.delta?.content || "");
stream: true,
});

for await (const chunk of stream) {
if (chunk.choices && chunk.choices.length > 0) {
const newContent = chunk.choices[0].delta.content;
out += newContent;
console.log(newContent);
}
}
```

Expand Down
1 change: 0 additions & 1 deletion docs/api-inference/tasks/image-classification.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@ For more details about the `image-classification` task, check out its [dedicated
### Recommended models

- [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224): A strong image classification model.
- [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224): A robust image classification model.

Explore all available models and find the one that suits you best [here](https://huggingface.co/models?inference=warm&pipeline_tag=image-classification&sort=trending).

Expand Down
Loading

0 comments on commit 290314b

Please sign in to comment.