Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PEFT to advanced training script #6294

Merged
merged 14 commits into from
Dec 27, 2023
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Will need to peft as a dependency in the requirements.txt.

from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file
Expand All @@ -54,10 +56,9 @@
UNet2DConditionModel,
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.models.lora import LoRALinearLayer
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr, unet_lora_state_dict
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.training_utils import compute_snr
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available


Expand All @@ -67,39 +68,6 @@
logger = get_logger(__name__)


# TODO: This function should be removed once training scripts are rewritten in PEFT
def text_encoder_lora_state_dict(text_encoder):
state_dict = {}

def text_encoder_attn_modules(text_encoder):
from transformers import CLIPTextModel, CLIPTextModelWithProjection

attn_modules = []

if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
name = f"text_model.encoder.layers.{i}.self_attn"
mod = layer.self_attn
attn_modules.append((name, mod))

return attn_modules

for name, module in text_encoder_attn_modules(text_encoder):
for k, v in module.q_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

for k, v in module.k_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

for k, v in module.v_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

for k, v in module.out_proj.lora_linear_layer.state_dict().items():
state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

return state_dict


def save_model_card(
repo_id: str,
images=None,
Expand Down Expand Up @@ -161,8 +129,6 @@ def save_model_card(
base_model: {base_model}
instance_prompt: {instance_prompt}
license: openrail++
widget:
- text: '{validation_prompt if validation_prompt else instance_prompt}'
---
"""

Expand Down Expand Up @@ -1264,54 +1230,25 @@ def main(args):
text_encoder_two.gradient_checkpointing_enable()

# now we will add new LoRA weights to the attention layers
# Set correct lora layers
unet_lora_parameters = []
for attn_processor_name, attn_processor in unet.attn_processors.items():
# Parse the attention module.
attn_module = unet
for n in attn_processor_name.split(".")[:-1]:
attn_module = getattr(attn_module, n)

# Set the `lora_layer` attribute of the attention-related matrices.
attn_module.to_q.set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=args.rank
)
)
attn_module.to_k.set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=args.rank
)
)
attn_module.to_v.set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=args.rank
)
)
attn_module.to_out[0].set_lora_layer(
LoRALinearLayer(
in_features=attn_module.to_out[0].in_features,
out_features=attn_module.to_out[0].out_features,
rank=args.rank,
)
)

# Accumulate the LoRA params to optimize.
unet_lora_parameters.extend(attn_module.to_q.lora_layer.parameters())
unet_lora_parameters.extend(attn_module.to_k.lora_layer.parameters())
unet_lora_parameters.extend(attn_module.to_v.lora_layer.parameters())
unet_lora_parameters.extend(attn_module.to_out[0].lora_layer.parameters())
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Very important!

init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
unet.add_adapter(unet_lora_config)

# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
# So, instead, we monkey-patch the forward calls of its attention-blocks.
if args.train_text_encoder:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
text_lora_parameters_one = LoraLoaderMixin._modify_text_encoder(
text_encoder_one, dtype=torch.float32, rank=args.rank
)
text_lora_parameters_two = LoraLoaderMixin._modify_text_encoder(
text_encoder_two, dtype=torch.float32, rank=args.rank
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)

# if we use textual inversion, we freeze all parameters except for the token embeddings
# in text encoder
Expand All @@ -1335,6 +1272,17 @@ def main(args):
else:
param.requires_grad = False

# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
Comment on lines +1275 to +1284
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Another important one!


# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
Expand All @@ -1346,11 +1294,15 @@ def save_model_hook(models, weights, output_dir):

for model in models:
if isinstance(model, type(accelerator.unwrap_model(unet))):
unet_lora_layers_to_save = unet_lora_state_dict(model)
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
text_encoder_one_lora_layers_to_save = text_encoder_lora_state_dict(model)
text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
text_encoder_two_lora_layers_to_save = text_encoder_lora_state_dict(model)
text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
else:
raise ValueError(f"unexpected save model: {model.__class__}")

Expand Down Expand Up @@ -1407,6 +1359,12 @@ def load_model_hook(models, input_dir):
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)

unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

if args.train_text_encoder:
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))

# If neither --train_text_encoder nor --train_text_encoder_ti, text_encoders remain frozen during training
freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti)

Expand Down Expand Up @@ -1997,13 +1955,17 @@ def compute_text_embeddings(prompt, text_encoders, tokenizers):
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
unet = unet.to(torch.float32)
unet_lora_layers = unet_lora_state_dict(unet)
unet_lora_layers = get_peft_model_state_dict(unet)

if args.train_text_encoder:
text_encoder_one = accelerator.unwrap_model(text_encoder_one)
text_encoder_lora_layers = text_encoder_lora_state_dict(text_encoder_one.to(torch.float32))
text_encoder_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_one.to(torch.float32))
)
text_encoder_two = accelerator.unwrap_model(text_encoder_two)
text_encoder_2_lora_layers = text_encoder_lora_state_dict(text_encoder_two.to(torch.float32))
text_encoder_2_lora_layers = convert_state_dict_to_diffusers(
get_peft_model_state_dict(text_encoder_two.to(torch.float32))
)
else:
text_encoder_lora_layers = None
text_encoder_2_lora_layers = None
Expand Down
Loading