Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Easy] Minor AnimateDiff Doc nits #5640

Merged
merged 1 commit into from
Nov 3, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions docs/source/en/api/pipelines/animatediff.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,12 +20,16 @@ The abstract of the paper is the following:

With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at this https URL .

## Available Pipelines:
## Available Pipelines

| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |

## Available checkpoints

Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/guoyww/). These checkpoints are meant to work with any model based on Stable Diffusion 1.4/1.5

## Usage example

AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
Expand Down Expand Up @@ -154,8 +158,6 @@ pip install peft

Then you can use the following code to combine Motion LoRAs.

```python

```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
Expand Down Expand Up @@ -211,6 +213,7 @@ export_to_gif(frames, "animation.gif")


## AnimateDiffPipeline

[[autodoc]] AnimateDiffPipeline
- all
- __call__
Expand All @@ -225,6 +228,3 @@ export_to_gif(frames, "animation.gif")

[[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput

## Available checkpoints

Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/guoyww/). These checkpoints are meant to work with any model based on Stable Diffusion 1.4/1.5
Loading