Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Single File] Add single file support for Mochi Transformer #10268

Merged
merged 1 commit into from
Dec 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions src/diffusers/loaders/single_file_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
convert_ldm_vae_checkpoint,
convert_ltx_transformer_checkpoint_to_diffusers,
convert_ltx_vae_checkpoint_to_diffusers,
convert_mochi_transformer_checkpoint_to_diffusers,
convert_sd3_transformer_checkpoint_to_diffusers,
convert_stable_cascade_unet_single_file_to_diffusers,
create_controlnet_diffusers_config_from_ldm,
Expand Down Expand Up @@ -96,6 +97,10 @@
"default_subfolder": "vae",
},
"AutoencoderDC": {"checkpoint_mapping_fn": convert_autoencoder_dc_checkpoint_to_diffusers},
"MochiTransformer3DModel": {
"checkpoint_mapping_fn": convert_mochi_transformer_checkpoint_to_diffusers,
"default_subfolder": "transformer",
},
}


Expand Down
109 changes: 109 additions & 0 deletions src/diffusers/loaders/single_file_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@
],
"autoencoder-dc": "decoder.stages.1.op_list.0.main.conv.conv.bias",
"autoencoder-dc-sana": "encoder.project_in.conv.bias",
"mochi-1-preview": ["model.diffusion_model.blocks.0.attn.qkv_x.weight", "blocks.0.attn.qkv_x.weight"],
}

DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
Expand Down Expand Up @@ -157,6 +158,7 @@
"autoencoder-dc-f64c128": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers"},
"autoencoder-dc-f32c32": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers"},
"autoencoder-dc-f32c32-sana": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers"},
"mochi-1-preview": {"pretrained_model_name_or_path": "genmo/mochi-1-preview"},
}

# Use to configure model sample size when original config is provided
Expand Down Expand Up @@ -610,6 +612,9 @@ def infer_diffusers_model_type(checkpoint):
else:
model_type = "autoencoder-dc-f128c512"

elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["mochi-1-preview"]):
model_type = "mochi-1-preview"

else:
model_type = "v1"

Expand Down Expand Up @@ -1750,6 +1755,12 @@ def swap_scale_shift(weight, dim):
return new_weight


def swap_proj_gate(weight):
proj, gate = weight.chunk(2, dim=0)
new_weight = torch.cat([gate, proj], dim=0)
return new_weight


def get_attn2_layers(state_dict):
attn2_layers = []
for key in state_dict.keys():
Expand Down Expand Up @@ -2406,3 +2417,101 @@ def remap_proj_conv_(key: str, state_dict):
handler_fn_inplace(key, converted_state_dict)

return converted_state_dict


def convert_mochi_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
new_state_dict = {}

# Comfy checkpoints add this prefix
keys = list(checkpoint.keys())
for k in keys:
if "model.diffusion_model." in k:
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

# Convert patch_embed
new_state_dict["patch_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
new_state_dict["patch_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")

# Convert time_embed
new_state_dict["time_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop("t_embedder.mlp.0.weight")
new_state_dict["time_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
new_state_dict["time_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop("t_embedder.mlp.2.weight")
new_state_dict["time_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")
new_state_dict["time_embed.pooler.to_kv.weight"] = checkpoint.pop("t5_y_embedder.to_kv.weight")
new_state_dict["time_embed.pooler.to_kv.bias"] = checkpoint.pop("t5_y_embedder.to_kv.bias")
new_state_dict["time_embed.pooler.to_q.weight"] = checkpoint.pop("t5_y_embedder.to_q.weight")
new_state_dict["time_embed.pooler.to_q.bias"] = checkpoint.pop("t5_y_embedder.to_q.bias")
new_state_dict["time_embed.pooler.to_out.weight"] = checkpoint.pop("t5_y_embedder.to_out.weight")
new_state_dict["time_embed.pooler.to_out.bias"] = checkpoint.pop("t5_y_embedder.to_out.bias")
new_state_dict["time_embed.caption_proj.weight"] = checkpoint.pop("t5_yproj.weight")
new_state_dict["time_embed.caption_proj.bias"] = checkpoint.pop("t5_yproj.bias")

# Convert transformer blocks
num_layers = 48
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
old_prefix = f"blocks.{i}."

# norm1
new_state_dict[block_prefix + "norm1.linear.weight"] = checkpoint.pop(old_prefix + "mod_x.weight")
new_state_dict[block_prefix + "norm1.linear.bias"] = checkpoint.pop(old_prefix + "mod_x.bias")
if i < num_layers - 1:
new_state_dict[block_prefix + "norm1_context.linear.weight"] = checkpoint.pop(old_prefix + "mod_y.weight")
new_state_dict[block_prefix + "norm1_context.linear.bias"] = checkpoint.pop(old_prefix + "mod_y.bias")
else:
new_state_dict[block_prefix + "norm1_context.linear_1.weight"] = checkpoint.pop(
old_prefix + "mod_y.weight"
)
new_state_dict[block_prefix + "norm1_context.linear_1.bias"] = checkpoint.pop(old_prefix + "mod_y.bias")

# Visual attention
qkv_weight = checkpoint.pop(old_prefix + "attn.qkv_x.weight")
q, k, v = qkv_weight.chunk(3, dim=0)

new_state_dict[block_prefix + "attn1.to_q.weight"] = q
new_state_dict[block_prefix + "attn1.to_k.weight"] = k
new_state_dict[block_prefix + "attn1.to_v.weight"] = v
new_state_dict[block_prefix + "attn1.norm_q.weight"] = checkpoint.pop(old_prefix + "attn.q_norm_x.weight")
new_state_dict[block_prefix + "attn1.norm_k.weight"] = checkpoint.pop(old_prefix + "attn.k_norm_x.weight")
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = checkpoint.pop(old_prefix + "attn.proj_x.weight")
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = checkpoint.pop(old_prefix + "attn.proj_x.bias")

# Context attention
qkv_weight = checkpoint.pop(old_prefix + "attn.qkv_y.weight")
q, k, v = qkv_weight.chunk(3, dim=0)

new_state_dict[block_prefix + "attn1.add_q_proj.weight"] = q
new_state_dict[block_prefix + "attn1.add_k_proj.weight"] = k
new_state_dict[block_prefix + "attn1.add_v_proj.weight"] = v
new_state_dict[block_prefix + "attn1.norm_added_q.weight"] = checkpoint.pop(
old_prefix + "attn.q_norm_y.weight"
)
new_state_dict[block_prefix + "attn1.norm_added_k.weight"] = checkpoint.pop(
old_prefix + "attn.k_norm_y.weight"
)
if i < num_layers - 1:
new_state_dict[block_prefix + "attn1.to_add_out.weight"] = checkpoint.pop(
old_prefix + "attn.proj_y.weight"
)
new_state_dict[block_prefix + "attn1.to_add_out.bias"] = checkpoint.pop(old_prefix + "attn.proj_y.bias")

# MLP
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = swap_proj_gate(
checkpoint.pop(old_prefix + "mlp_x.w1.weight")
)
new_state_dict[block_prefix + "ff.net.2.weight"] = checkpoint.pop(old_prefix + "mlp_x.w2.weight")
if i < num_layers - 1:
new_state_dict[block_prefix + "ff_context.net.0.proj.weight"] = swap_proj_gate(
checkpoint.pop(old_prefix + "mlp_y.w1.weight")
)
new_state_dict[block_prefix + "ff_context.net.2.weight"] = checkpoint.pop(old_prefix + "mlp_y.w2.weight")

# Output layers
new_state_dict["norm_out.linear.weight"] = swap_scale_shift(checkpoint.pop("final_layer.mod.weight"), dim=0)
new_state_dict["norm_out.linear.bias"] = swap_scale_shift(checkpoint.pop("final_layer.mod.bias"), dim=0)
new_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
new_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")

new_state_dict["pos_frequencies"] = checkpoint.pop("pos_frequencies")

return new_state_dict
3 changes: 2 additions & 1 deletion src/diffusers/models/transformers/transformer_mochi.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
Expand Down Expand Up @@ -304,7 +305,7 @@ def forward(


@maybe_allow_in_graph
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
r"""
A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview).

Expand Down
Loading