Skip to content

Commit

Permalink
Fix some documentation in ./src/diffusers/models/embeddings.py for de…
Browse files Browse the repository at this point in the history
…mo (#9579)

* Fix some documentation in ./src/diffusers/models/embeddings.py as demonstration.


---------

Co-authored-by: DaAccursed05 <[email protected]>
Co-authored-by: Aryan <[email protected]>
Co-authored-by: Aryan <[email protected]>
Co-authored-by: YiYi Xu <[email protected]>
  • Loading branch information
5 people authored Dec 3, 2024
1 parent 0763a7e commit fc72e0f
Showing 1 changed file with 105 additions and 5 deletions.
110 changes: 105 additions & 5 deletions src/diffusers/models/embeddings.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,12 +86,25 @@ def get_3d_sincos_pos_embed(
temporal_interpolation_scale: float = 1.0,
) -> np.ndarray:
r"""
Creates 3D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension of inputs. It must be divisible by 16.
spatial_size (`int` or `Tuple[int, int]`):
The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
spatial dimensions (height and width).
temporal_size (`int`):
The temporal dimension of postional embeddings (number of frames).
spatial_interpolation_scale (`float`, defaults to 1.0):
Scale factor for spatial grid interpolation.
temporal_interpolation_scale (`float`, defaults to 1.0):
Scale factor for temporal grid interpolation.
Returns:
`np.ndarray`:
The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
embed_dim]`.
"""
if embed_dim % 4 != 0:
raise ValueError("`embed_dim` must be divisible by 4")
Expand Down Expand Up @@ -129,8 +142,24 @@ def get_2d_sincos_pos_embed(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
Creates 2D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension.
grid_size (`int`):
The size of the grid height and width.
cls_token (`bool`, defaults to `False`):
Whether or not to add a classification token.
extra_tokens (`int`, defaults to `0`):
The number of extra tokens to add.
interpolation_scale (`float`, defaults to `1.0`):
The scale of the interpolation.
Returns:
pos_embed (`np.ndarray`):
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
embed_dim]` if using cls_token
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
Expand All @@ -148,6 +177,16 @@ def get_2d_sincos_pos_embed(


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
r"""
This function generates 2D sinusoidal positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension.
grid (`np.ndarray`): Grid of positions with shape `(H * W,)`.
Returns:
`np.ndarray`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")

Expand All @@ -161,7 +200,14 @@ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):

def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
This function generates 1D positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension `D`
pos (`numpy.ndarray`): 1D tensor of positions with shape `(M,)`
Returns:
`numpy.ndarray`: Sinusoidal positional embeddings of shape `(M, D)`.
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
Expand All @@ -181,7 +227,22 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):


class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding with support for SD3 cropping."""
"""
2D Image to Patch Embedding with support for SD3 cropping.
Args:
height (`int`, defaults to `224`): The height of the image.
width (`int`, defaults to `224`): The width of the image.
patch_size (`int`, defaults to `16`): The size of the patches.
in_channels (`int`, defaults to `3`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
bias (`bool`, defaults to `True`): Whether or not to use bias.
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
"""

def __init__(
self,
Expand Down Expand Up @@ -289,7 +350,15 @@ def forward(self, latent):


class LuminaPatchEmbed(nn.Module):
"""2D Image to Patch Embedding with support for Lumina-T2X"""
"""
2D Image to Patch Embedding with support for Lumina-T2X
Args:
patch_size (`int`, defaults to `2`): The size of the patches.
in_channels (`int`, defaults to `4`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
bias (`bool`, defaults to `True`): Whether or not to use bias.
"""

def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
super().__init__()
Expand Down Expand Up @@ -675,6 +744,20 @@ def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):


def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
"""
Get 2D RoPE from grid.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
grid (`np.ndarray`):
The grid of the positional embedding.
use_real (`bool`):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
"""
assert embed_dim % 4 == 0

# use half of dimensions to encode grid_h
Expand All @@ -695,6 +778,23 @@ def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):


def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
"""
Get 2D RoPE from grid.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
grid (`np.ndarray`):
The grid of the positional embedding.
linear_factor (`float`):
The linear factor of the positional embedding, which is used to scale the positional embedding in the linear
layer.
ntk_factor (`float`):
The ntk factor of the positional embedding, which is used to scale the positional embedding in the ntk layer.
Returns:
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
"""
assert embed_dim % 4 == 0

emb_h = get_1d_rotary_pos_embed(
Expand Down

0 comments on commit fc72e0f

Please sign in to comment.