-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
amused rename Update docs/source/en/api/pipelines/amused.md Co-authored-by: Patrick von Platen <[email protected]> AdaLayerNormContinuous default values custom micro conditioning micro conditioning docs put lookup from codebook in constructor fix conversion script remove manual fused flash attn kernel add training script temp remove training script add dummy gradient checkpointing func clarify temperatures is an instance variable by setting it remove additional SkipFF block args hardcode norm args rename tests folder fix paths and samples fix tests add training script training readme lora saving and loading non-lora saving/loading some readme fixes guards Update docs/source/en/api/pipelines/amused.md Co-authored-by: Suraj Patil <[email protected]> Update examples/amused/README.md Co-authored-by: Suraj Patil <[email protected]> Update examples/amused/train_amused.py Co-authored-by: Suraj Patil <[email protected]> vae upcasting add fp16 integration tests use tuple for micro cond copyrights remove casts delegate to torch.nn.LayerNorm move temperature to pipeline call upsampling/downsampling changes
- Loading branch information
1 parent
5b186b7
commit 4039815
Showing
30 changed files
with
4,789 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
<!--Copyright 2023 The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with | ||
the License. You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on | ||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
specific language governing permissions and limitations under the License. | ||
--> | ||
|
||
# aMUSEd | ||
|
||
Amused is a lightweight text to image model based off of the [muse](https://arxiv.org/pdf/2301.00704.pdf) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once. | ||
|
||
Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes. | ||
|
||
| Model | Params | | ||
|-------|--------| | ||
| [amused-256](https://huggingface.co/huggingface/amused-256) | 603M | | ||
| [amused-512](https://huggingface.co/huggingface/amused-512) | 608M | | ||
|
||
## AmusedPipeline | ||
|
||
[[autodoc]] AmusedPipeline | ||
- __call__ | ||
- all | ||
- enable_xformers_memory_efficient_attention | ||
- disable_xformers_memory_efficient_attention |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,326 @@ | ||
## Amused training | ||
|
||
Amused can be finetuned on simple datasets relatively cheaply and quickly. Using 8bit optimizers, lora, and gradient accumulation, amused can be finetuned with as little as 5.5 GB. Here are a set of examples for finetuning amused on some relatively simple datasets. These training recipies are aggressively oriented towards minimal resources and fast verification -- i.e. the batch sizes are quite low and the learning rates are quite high. For optimal quality, you will probably want to increase the batch sizes and decrease learning rates. | ||
|
||
All training examples use fp16 mixed precision and gradient checkpointing. We don't show 8 bit adam + lora as its about the same memory use as just using lora (bitsandbytes uses full precision optimizer states for weights below a minimum size). | ||
|
||
### Finetuning the 256 checkpoint | ||
|
||
These examples finetune on this [nouns](https://huggingface.co/datasets/m1guelpf/nouns) dataset. | ||
|
||
Example results: | ||
|
||
![noun1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun1.png) ![noun2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun2.png) ![noun3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun3.png) | ||
|
||
|
||
#### Full finetuning | ||
|
||
Batch size: 8, Learning rate: 1e-4, Gives decent results in 750-1000 steps | ||
|
||
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used | | ||
|------------|-----------------------------|------------------|-------------| | ||
| 8 | 1 | 8 | 19.7 GB | | ||
| 4 | 2 | 8 | 18.3 GB | | ||
| 1 | 8 | 8 | 17.9 GB | | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--train_batch_size <batch size> \ | ||
--gradient_accumulation_steps <gradient accumulation steps> \ | ||
--learning_rate 1e-4 \ | ||
--pretrained_model_name_or_path huggingface/amused-256 \ | ||
--instance_data_dataset 'm1guelpf/nouns' \ | ||
--image_key image \ | ||
--prompt_key text \ | ||
--resolution 256 \ | ||
--mixed_precision fp16 \ | ||
--lr_scheduler constant \ | ||
--validation_prompts \ | ||
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \ | ||
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \ | ||
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \ | ||
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \ | ||
'a pixel art character with square red glasses' \ | ||
'a pixel art character' \ | ||
'square red glasses on a pixel art character' \ | ||
'square red glasses on a pixel art character with a baseball-shaped head' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 250 \ | ||
--gradient_checkpointing | ||
``` | ||
|
||
#### Full finetuning + 8 bit adam | ||
|
||
Note that this training config keeps the batch size low and the learning rate high to get results fast with low resources. However, due to 8 bit adam, it will diverge eventually. If you want to train for longer, you will have to up the batch size and lower the learning rate. | ||
|
||
Batch size: 16, Learning rate: 2e-5, Gives decent results in ~750 steps | ||
|
||
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used | | ||
|------------|-----------------------------|------------------|-------------| | ||
| 16 | 1 | 16 | 20.1 GB | | ||
| 8 | 2 | 16 | 15.6 GB | | ||
| 1 | 16 | 16 | 10.7 GB | | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--train_batch_size <batch size> \ | ||
--gradient_accumulation_steps <gradient accumulation steps> \ | ||
--learning_rate 2e-5 \ | ||
--use_8bit_adam \ | ||
--pretrained_model_name_or_path huggingface/amused-256 \ | ||
--instance_data_dataset 'm1guelpf/nouns' \ | ||
--image_key image \ | ||
--prompt_key text \ | ||
--resolution 256 \ | ||
--mixed_precision fp16 \ | ||
--lr_scheduler constant \ | ||
--validation_prompts \ | ||
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \ | ||
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \ | ||
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \ | ||
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \ | ||
'a pixel art character with square red glasses' \ | ||
'a pixel art character' \ | ||
'square red glasses on a pixel art character' \ | ||
'square red glasses on a pixel art character with a baseball-shaped head' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 250 \ | ||
--gradient_checkpointing | ||
``` | ||
|
||
#### Full finetuning + lora | ||
|
||
Batch size: 16, Learning rate: 8e-4, Gives decent results in 1000-1250 steps | ||
|
||
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used | | ||
|------------|-----------------------------|------------------|-------------| | ||
| 16 | 1 | 16 | 14.1 GB | | ||
| 8 | 2 | 16 | 10.1 GB | | ||
| 1 | 16 | 16 | 6.5 GB | | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--train_batch_size <batch size> \ | ||
--gradient_accumulation_steps <gradient accumulation steps> \ | ||
--learning_rate 8e-4 \ | ||
--use_lora \ | ||
--pretrained_model_name_or_path huggingface/amused-256 \ | ||
--instance_data_dataset 'm1guelpf/nouns' \ | ||
--image_key image \ | ||
--prompt_key text \ | ||
--resolution 256 \ | ||
--mixed_precision fp16 \ | ||
--lr_scheduler constant \ | ||
--validation_prompts \ | ||
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \ | ||
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \ | ||
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \ | ||
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \ | ||
'a pixel art character with square red glasses' \ | ||
'a pixel art character' \ | ||
'square red glasses on a pixel art character' \ | ||
'square red glasses on a pixel art character with a baseball-shaped head' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 250 \ | ||
--gradient_checkpointing | ||
``` | ||
|
||
### Finetuning the 512 checkpoint | ||
|
||
These examples finetune on this [minecraft](https://huggingface.co/monadical-labs/minecraft-preview) dataset. | ||
|
||
Example results: | ||
|
||
![minecraft1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft1.png) ![minecraft2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft2.png) ![minecraft3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft3.png) | ||
|
||
#### Full finetuning | ||
|
||
Batch size: 8, Learning rate: 8e-5, Gives decent results in 500-1000 steps | ||
|
||
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used | | ||
|------------|-----------------------------|------------------|-------------| | ||
| 8 | 1 | 8 | 24.2 GB | | ||
| 4 | 2 | 8 | 19.7 GB | | ||
| 1 | 8 | 8 | 16.99 GB | | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--train_batch_size <batch size> \ | ||
--gradient_accumulation_steps <gradient accumulation steps> \ | ||
--learning_rate 8e-5 \ | ||
--pretrained_model_name_or_path huggingface/amused-512 \ | ||
--instance_data_dataset 'monadical-labs/minecraft-preview' \ | ||
--prompt_prefix 'minecraft ' \ | ||
--image_key image \ | ||
--prompt_key text \ | ||
--resolution 512 \ | ||
--mixed_precision fp16 \ | ||
--lr_scheduler constant \ | ||
--validation_prompts \ | ||
'minecraft Avatar' \ | ||
'minecraft character' \ | ||
'minecraft' \ | ||
'minecraft president' \ | ||
'minecraft pig' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 250 \ | ||
--gradient_checkpointing | ||
``` | ||
|
||
#### Full finetuning + 8 bit adam | ||
|
||
Batch size: 8, Learning rate: 5e-6, Gives decent results in 500-1000 steps | ||
|
||
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used | | ||
|------------|-----------------------------|------------------|-------------| | ||
| 8 | 1 | 8 | 21.2 GB | | ||
| 4 | 2 | 8 | 13.3 GB | | ||
| 1 | 8 | 8 | 9.9 GB | | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--train_batch_size <batch size> \ | ||
--gradient_accumulation_steps <gradient accumulation steps> \ | ||
--learning_rate 5e-6 \ | ||
--pretrained_model_name_or_path huggingface/amused-512 \ | ||
--instance_data_dataset 'monadical-labs/minecraft-preview' \ | ||
--prompt_prefix 'minecraft ' \ | ||
--image_key image \ | ||
--prompt_key text \ | ||
--resolution 512 \ | ||
--mixed_precision fp16 \ | ||
--lr_scheduler constant \ | ||
--validation_prompts \ | ||
'minecraft Avatar' \ | ||
'minecraft character' \ | ||
'minecraft' \ | ||
'minecraft president' \ | ||
'minecraft pig' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 250 \ | ||
--gradient_checkpointing | ||
``` | ||
|
||
#### Full finetuning + lora | ||
|
||
Batch size: 8, Learning rate: 1e-4, Gives decent results in 500-1000 steps | ||
|
||
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used | | ||
|------------|-----------------------------|------------------|-------------| | ||
| 8 | 1 | 8 | 12.7 GB | | ||
| 4 | 2 | 8 | 9.0 GB | | ||
| 1 | 8 | 8 | 5.6 GB | | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--train_batch_size <batch size> \ | ||
--gradient_accumulation_steps <gradient accumulation steps> \ | ||
--learning_rate 1e-4 \ | ||
--use_lora \ | ||
--pretrained_model_name_or_path huggingface/amused-512 \ | ||
--instance_data_dataset 'monadical-labs/minecraft-preview' \ | ||
--prompt_prefix 'minecraft ' \ | ||
--image_key image \ | ||
--prompt_key text \ | ||
--resolution 512 \ | ||
--mixed_precision fp16 \ | ||
--lr_scheduler constant \ | ||
--validation_prompts \ | ||
'minecraft Avatar' \ | ||
'minecraft character' \ | ||
'minecraft' \ | ||
'minecraft president' \ | ||
'minecraft pig' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 250 \ | ||
--gradient_checkpointing | ||
``` | ||
|
||
### Styledrop | ||
|
||
[Styledrop](https://arxiv.org/abs/2306.00983) is an efficient finetuning method for learning a new style from just one or very few images. It has an optional first stage to generate human picked additional training samples. The additional training samples can be used to augment the initial images. Our examples exclude the optional additional image selection stage and instead we just finetune on a single image. | ||
|
||
This is our example style image: | ||
![example](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png) | ||
|
||
Download it to your local directory with | ||
```sh | ||
wget https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png | ||
``` | ||
|
||
#### 256 | ||
|
||
Example results: | ||
|
||
![glowing_256_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_1.png) ![glowing_256_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_2.png) ![glowing_256_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_3.png) | ||
|
||
Learning rate: 4e-4, Gives decent results in 1500-2000 steps | ||
|
||
Memory used: 6.5 GB | ||
|
||
```sh | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--mixed_precision fp16 \ | ||
--report_to wandb \ | ||
--use_lora \ | ||
--pretrained_model_name_or_path huggingface/amused-256 \ | ||
--train_batch_size 1 \ | ||
--lr_scheduler constant \ | ||
--learning_rate 4e-4 \ | ||
--validation_prompts \ | ||
'A chihuahua walking on the street in [V] style' \ | ||
'A banana on the table in [V] style' \ | ||
'A church on the street in [V] style' \ | ||
'A tabby cat walking in the forest in [V] style' \ | ||
--instance_data_image 'A mushroom in [V] style.png' \ | ||
--max_train_steps 10000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 100 \ | ||
--resolution 256 | ||
``` | ||
|
||
#### 512 | ||
|
||
Example results: | ||
|
||
![glowing_512_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_1.png) ![glowing_512_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_2.png) ![glowing_512_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_3.png) | ||
|
||
Learning rate: 1e-3, Lora alpha 1, Gives decent results in 1500-2000 steps | ||
|
||
Memory used: 5.6 GB | ||
|
||
``` | ||
accelerate launch train_amused.py \ | ||
--output_dir <output path> \ | ||
--mixed_precision fp16 \ | ||
--report_to wandb \ | ||
--use_lora \ | ||
--pretrained_model_name_or_path huggingface/amused-512 \ | ||
--train_batch_size 1 \ | ||
--lr_scheduler constant \ | ||
--learning_rate 1e-3 \ | ||
--validation_prompts \ | ||
'A chihuahua walking on the street in [V] style' \ | ||
'A banana on the table in [V] style' \ | ||
'A church on the street in [V] style' \ | ||
'A tabby cat walking in the forest in [V] style' \ | ||
--instance_data_image 'A mushroom in [V] style.png' \ | ||
--max_train_steps 100000 \ | ||
--checkpointing_steps 500 \ | ||
--validation_steps 100 \ | ||
--resolution 512 \ | ||
--lora_alpha 1 | ||
``` |
Oops, something went wrong.